PPCA-TIG焊过程中MnCl2和CaF2活性剂电弧光谱对比研究
Spectral Analysis of PPCA-TIG Welding Arc based on MnCl2 and CaF2
- 2024年54卷第7期 页码:55-61
纸质出版日期: 2024-07-25
DOI: 10.7512/j.issn.1001-2303.2024.07.08
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2024-07-25 ,
扫 描 看 全 文
姜百川,黄勇,岳仕麒,等.PPCA-TIG焊过程中MnCl2和CaF2活性剂电弧光谱对比研究[J].电焊机,2024,54(7):55-61.
JIANG Baichuan, HUANG Yong, YUE Shiqi, et al.Spectral Analysis of PPCA-TIG Welding Arc based on MnCl2 and CaF2[J].Electric Welding Machine, 2024, 54(7): 55-61.
PPCA-TIG焊作为一种高效焊接方法,提高了活性元素在熔池表面的利用率,但对该电弧物理行为的理解仍存在空缺。为阐明PPCA-TIG焊中
活性元素在电弧中的分布特征和对电弧物理行为的影响规律,拟采用光谱法,设计电弧空域逐点扫描同步采集系统,使用CaF
2
、MnCl
2
两种活性剂,采用Stark谱线法计算电弧电子密度,并对Ca、Mn元素的分布特征进行讨论。结果表明,相同参数下,加入MnCl
2
和CaF
2
活性剂后能明显提高整体电弧的电离度和电子密度,在热输入保持不变的情况下,电子密度的提高导致电流密度增加,熔池表面的热量更加集中,从而增加焊缝熔深。
PPCA-TIG welding as a high-efficiency welding method improves the utilisation of active elements on the surface of the molten pool
but there is still a gap in the understanding of the physical behaviour of this arc. In order to elucidate the distribution characteristics of active elements in the arc and the influence law on the physical behaviour of the arc in PPCA-TIG welding
this paper intends to adopt the spectroscopic method
design the arc airspace point-by-point scanning synchronous acquisition system
and use two active agents
CaF
2
and MnCl
2
to calculate the electron density of the arc by using the Stark spectral line method
and the distribution characteristics of the Ca and Mn elements are discussed. The results show that under the same parameters
the addition of MnCl
2
and CaF
2
active agents can significantly increase the overall arc ionisation
and can significantly increase the electron density of the arc. Under the condition that the heat input is kept unchanged
the increase in electron density leads to an increase in current density
and the heat on the surface of the molten pool is more concentrated
thus increasing the weld depth.
PPCA-TIG焊活性剂电子密度电弧光谱电弧温度
PPCA-TIG weldingelectron densityarc spectroscopyarc temperature
刘观辉,魏浩然,易耀勇,等. 奥氏体不锈钢A-TIG焊接头的耐蚀性[J]. 焊接技术,2023,52(05):42-45.
LIU G H,WEI H R,YI Y Y,et al. Corrosion resistance of austenitic stainless steel A-TIG welded joints[J]. Welding Technology,2023,52(05):42-45.
Babbar A,Kumar A,Jain V,et al. Enhancement of Activated Tungsten Inert Gas (A-TIG) Welding using Multi-Component TiO2-SiO2-Al2O3 Hybrid Flux[J]. Measurement,2019,148:106912.
Aman S,Vivek S,Ajay P S,et al. Welding investigations on mechanical property and microstructure of TIG and A-TIG Weld of Hastelloy C-276[J]. Engineering Research Express,2023,5:025004.
LIU L M, XU X K,XU G M, et al. Effect of laser on double-arc physical characteristics in pulsed laser-induced double-TIG welding[J].The International Journal of Advanced Manufacturing Technology,2021,119:3-4.
王新鑫,罗怡,李春天,等. 双TIG焊接电弧数值分析[J]. 热加工工艺,2020,49(7):133-138.
WANG X X,LUO Y,LI C T,et al. Numerical analysis of double TIG welding arc[J]. Thermal Processing Technology,2020,49(7):133-138.
陆善平,李冬杰,李殿中,等. 双层气流保护TIG焊接方法[J]. 焊接学报,2010,31(02):21-24.
LU S P,LI D J,LI D Z,et al. Double-layer gas flow protection TIG welding method[J]. Journal of Welding,2010,31(02):21-24.
安亚君,徐振,陶佳美,等. 磁场与粉煤灰联合作用下TIG焊电弧行为[J]. 焊接学报,2023,44(3):122-128.
AN Y J,XU Z,TAO J M,et al. Behaviour of TIG welding arc under the combined effect of magnetic field and fly ash[J]. Journal of Welding,2023,44(3):122-128.
XU J Y,YU H W,XIAO R Q, et al. Features detection of Al alloy porosity during GTAW process based on arc spectrum and improved porosity-focus decision tree[J].Journal of Manufacturing Processes,2023,88:71-83.
LI C K,SHI Y,GU Y F,et al. Effect of oxide on surface tension of molten metal[J]. RSC Advances,2017,7:53941-53950.
LI Z G,ZHANG S S,LIU D J,et al. Study on the Number Density of Underwater Welding Arc Plasma Under Different Water Depth[J]. Spectroscopy and Spectral Analysis,2021,41(4):1151-1156.
肖笑,张柯柯,李芳,等. 基于光谱诊断的氩氮TIG焊电弧物理特性分析[J].焊接学报,2019,40(12):59-62.
XIAO X,ZHANG K K,LI F,et al. Physical characterisation of argon and nitrogen TIG welding arc based on spectral diagnosis[J]. Journal of Welding,2019,40(12):59-62.
牛键,余海洲,闫东东,等. Cr含量对Ti(C,N)基金属陶瓷高温抗氧化性的探究[J]. 硬质合金,2021,38(06):395-402.
NIU J,YU H Z,YAN D D,et al. Investigation of Cr content on high temperature oxidation resistance of Ti(C,N)-based cermets[J]. Cemented carbide,2021,38(06):395-402.
Gajo T,Mijatovic Z,Djurović S. Plasma temperature determination based on the ratio of plasma electron densities obtained from hydrogen Hα and Hβ spectral lines[J]. Spectrochimica Acta: Atomic Spectroscopy,2022,194:106484.
WANG Y,SHI J L,LI Y, et al. Observation of the significant reductions of electron density and electron temperature in a cascaded arc high density argon plasma with ammonia seeding comparing with nitrogen seeding by laser Thomson scattering approach[J]. Nuclear Materials and Energy,2022,33:101295.
Ryujiro S,Yuya M,Daisuke H,et al. Spectroscopic Measurement of Arc-Discharge Argon Plasma Plume Injected into Water[J]. IEEJ Transactions on Electrical and Electronic Engineering,2021,16(3):364-373.
ZHANG R Y,JIANG F,CHEN S J. Droplet transfer behaviour in twin-body plasma arc welding[J]. Journal of Manufacturing Processes,2019,41:330-336.
相关文章
相关作者
相关机构