中锰低温钢富氩混合气体保护焊工艺研究
Study on Argon-rich Mixed Gas Shielded Welding Process of Medium-Mn Low-temperature Steel
- 2024年54卷第7期 页码:46-54
纸质出版日期: 2024-07-25
DOI: 10.7512/j.issn.1001-2303.2024.07.07
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2024-07-25 ,
扫 描 看 全 文
孙庆,杜预,王晓南,等.中锰低温钢富氩混合气体保护焊工艺研究[J].电焊机,2024,54(7):46-54.
SUN Qing, DU Yu, WANG Xiaonan, et al.Study on Argon-rich Mixed Gas Shielded Welding Process of Medium-Mn Low-temperature Steel[J].Electric Welding Machine, 2024, 54(7): 46-54.
较高的锰含量给中锰低温钢焊接带来了挑战,这在一定程度上限制了中锰低温钢在工业生产中的应用。采用富氩混合气体保护焊对中锰低温钢进行焊接试验,研究不同焊接热输入条件下,焊接接头显微组织和力学性能的变化规律。结果表明:除焊缝及母材外,焊接接头各区域均为局部硬化区,且硬化程度随热输入的增加而增大;当热输入由12 kJ/cm增加到22 kJ/cm时,焊接接头的屈服强度由820 MPa降至775 MPa,抗拉强度由983 MPa降至925 MPa;当热输入为12 kJ/cm 和16.8 kJ/cm时,其焊接接头在-40 ℃条件下均有着良好的冲击韧性,且后者焊接接头各区域冲击吸收功较为均匀,在45 J左右;焊缝区细小的夹杂物及针状铁素体提供了高密度的大角度晶界,减缓了裂纹扩展速率。热影响区稳定性较低的残余奥氏体在受到冲击载荷作用时发生相变诱导塑性(TRIP)效应,提高了焊接接头的低温冲击韧性。
The high Mn content poses challenges for the welding of medium-Mn low-temperature steel
which to some extent limits its application in industrial production. Welding experiments were conducted on medium-Mn low-temperature steel using argon-rich mixed gas shielded welding to study the changes in microstructure and mechanical properties of welded joints under different heat input conditions. The results show that
except for the weld and base metal
all areas of the welded joint are localized hardening zones
and the degree of hardening increases with the increase of heat input; When the heat input increases from 12 kJ/cm to 22 kJ/cm
the yield strength of the welded joint decreases from 820 MPa to 775 MPa
and the tensile strength decreases from 983 MPa to 925 MPa; When the heat input is 12 kJ/cm and 16.8 kJ/cm
the welded joint has excellent impact toughness under -40 ℃ conditions
and the impact absorption energy in each area of the welded joint is relatively uniform
around 45 J; The small inclusions and acicular ferrite in the weld zone provide a large number of high-angle grain boundaries(HAGBs) slow down the crack propagation rate. The residual austenite with low stability in the heat-affected zone(HAZ) undergoes transformation-induced plasticity(TRIP) effect under impact load
which improves the low-temperature impact toughness of welded joints.
中锰低温钢富氩混合气体保护焊焊接热输入残余奥氏体
medium-Mn low-temperature steelargon-rich mixed gas shielded weldingheat inputresidual austenite
Liao Z,Dong Y,Du Y,et al. Effects of different intercritical annealing processes on microstructure and cryogenic toughness of newly designed medium-Mn and low-Ni steel[J]. Journal of Materials Research and Technology,2023,23:1471-1486.
Deng X,Li X,Huang L,et al. Retained Austenite Control and Extra-Cryogenic Impact Toughness of Fe-3.0%Mn Low Carbon Steel[J]. Materials Science Forum,2020,993:520-525.
齐祥羽. 高强中锰钢焊接热循环下的组织性能与断裂行为[D]. 沈阳:东北大学,2019.
Qi X Y. Microstructure and properties of high strength medium manganese steel under welding thermal cycle and its fracture behavior[D].Shenyang:Northeastern University,2019.
Yoo J,Han K,Park Y,et al. Correlation between microstructure and mechanical properties of heat affected zones in Fe-8Mn-0.06C steel welds[J]. Materials Chemistry and Physics,2014,146(1):175-182.
Chen Y,Wang H,Cai H,et al. Role of Reversed Austenite Behavior in Determining Microstructure and Toughness of Advanced Medium Mn Steel by Welding Thermal Cycle[J]. Materials,2018,11(11):2127.
Zhao H,Gao J,Wu G,et al. Crystallographic characteristics of acicular ferrite nucleated on inclusions in a HSLA steel[J]. Journal of Materials Research and Technology,2024,28:1957-1966.
Takada A,Komizo Y I,Terasaki H,et al. Crystallographic analysis for acicular ferrite formation in low carbon steel weld metals[J]. Welding International,2015,29(4):254-61.
Wan X L,Wei R,Wu K M. Effect of acicular ferrite formation on grain refinement in the coarse-grained region of heat-affected zone[J]. Materials Characterization,2010,61(7):726-731.
Babu S S,Bhadeshia H K D H. Transition from bainite to acicular ferrite in reheated Fe-Cr-C weld deposits [J]. Materials Science and Technology,1990,6(10):1005-1020.
毕楠楠. 高强塑性中锰钢组织调控及强韧化机制的研究[D]. 安徽:中国科学技术大学,2023.
Bi N N. Study on microstructure control and strengthening-toughening mechanism of high strength and plasticity medium manganese steel[D].Anhui: University of Science and Technology of China,2023.
Sugimoto K I,Usui N,Kobayashi M,et al. Effects of Volume Fraction and Stability of Retained Austenite on Ductility of TRIP-aided Dual-phase Steels[J]. ISIJ International,1992,32(12):1311-1318.
朱长友. 690MPa级结构用中锰钢板焊接性能研究 [D]. 辽宁:东北大学,2020.
Zhu C Y. Study on weldability of 690MPa grade structure medium manganese steel[D]. Shenyang:Northeastern University,2020.
Mu Y L,Wang Q D,Hu M L,et al. Elevated-temperature impact toughness of Mg-(Gd,Y)-Zr alloy[J]. Scripta Materialia,2013,68(11):885-888.
相关作者
相关机构