ERNiCrMo-3焊丝组织性能及内部织构研究
Research on Microstructure Properties and Internal Texture of ERNiCrMo-3 Welding Wire
- 2024年54卷第7期 页码:38-45
纸质出版日期: 2024-07-25
DOI: 10.7512/j.issn.1001-2303.2024.07.06
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2024-07-25 ,
扫 描 看 全 文
雷智刚,夏天东,王晓军,等.ERNiCrMo-3焊丝组织性能及内部织构研究[J].电焊机,2024,54(7):38-45.
LEI Zhigang, XIA Tiandong, WANG Xiaojun, et al.Research on Microstructure Properties and Internal Texture of ERNiCrMo-3 Welding Wire[J].Electric Welding Machine, 2024, 54(7): 38-45.
对比研究了国内外三种不同ERNiCrMo-3焊丝的表面质量、显微组织、内部织构及其力学性能。结果表明:三种焊丝的平均松弛直径差异较小,国外焊丝(3#)的夹杂物尺寸在三种焊丝中最小(0.047mm),其中1#中夹杂物面积比2#(0.533%)小49.9%。三种焊丝均出现孪晶组织,且国内焊丝(1#)孪晶界占比最大(9.02%),而国外焊丝(3#)最小(1.85%)。孪晶界占比的差异可能影响焊丝的力学性能。三种焊丝在{111}和{110}晶面均具有明显的择优取向,3#的{111}晶面织构密度达到最大值23.75。抗拉强度最大(1 537 MPa)的3#比抗拉强度最小的1#高近40.6%,并且3#中晶界强化贡献了324.48 MPa。
In this paper
the surface quality
microstructure
internal texture and mechanical properties of three ERNiCrMo-3 welding wires at home and abroad were compared and studied. The results showed that the average relaxation diameter of the three welding wires was small
and the inclusion size of the 3# ERNiCrMo-3 welding wire was the smallest (0.047mm) among the three welding wires
and the inclusion area in 1# was 49.9% smaller than that of 2# (0.533%). Twin microstructure appeared in all three ERNiCrMo-3 wires
and the twin boundary accounted for the largest proportion (9.02%) in 1#
and the 3# (1.85%) with the fewest twin boundary was nearly 79.49% less than 1#. The three welding wires of 1#
2#
and 3# all have obvious preferred orientation in the {111} and {110} crystal faces
and the texture density of the {111} crystal faces of 3# reaches a maximum of 23.75. The 3# with the largest tensile strength (1537MPa) is nearly 40.6% higher than the 1# (domestic) with the smallest tensile strength
and the grain boundary strengthening in 3# contributes 324.48MPa.
ERNiCrMo-3焊丝表面质量显微组织择优取向力学性能
ERNiCrMo-3 welding wireSurfacemicrostructuremerit-based orientationMechanical properties
RAHUL,ABHISHEK K,DATTA S,et al. Machining performance optimization for electro-discharge machining of Inconel 601,625,718 and 825: an integrated optimization route combining satisfaction function,fuzzy inference system and Taguchi approach[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2017,39(9):3499-3527.
张红梅,顾冬冬. 激光增材制造镍基高温合金构件形性调控及在航空航天中的应用[J]. 电加工与模具,2020(06):1-10+24.
ZHANG H M,GU D D. Laser Additive Manufacturing of Nickel-based Superalloys and Its Structure-performance Control and Aerospace Applications[J].Electromachining& Mould,2020(06):1-10+24.
赵雅萱. 高Cr含量镍基合金焊丝的制备及其抗高温氧化与腐蚀性能[D]. 江苏:南京航空航天大学,2018.
ZHAO Y X.Preparation of High Cr Content Ni-BasedAlloy Wire and Its High TemperatureOxidation and Corrosion Resistance[D]. Jiangsu:Nanjing University of Aeronautics and Astronautics,2018.
Kang R,Zhang P,Wei Z,et al. Experimental Study on Ultrasonic Assisted Turning of GH4068 Superalloy[J]. Materials,2023,16(9):3554.
莫文林,陆善平,李殿中,等. 一种核电核岛主设备用镍基焊丝的研制[J].焊接学报,2014,35(6):90-94.
MO W L,LU S P,LI D Z,et al. Research and development of Ni-based filler wire for key components of nuclear power plant[J]. Transactions of The China Welding Institution,2014,35(6):90-94.
中华人民共和国工业和信息化部. 工业和信息化部关于发布重点新材料首批次应用示范指导目录(2024年版)的通告[A/OL]. (2023-12-22)[2023-12-25]. https://www.miit.gov.cn/zwgk/zcwj/wjfb/tg/art/2023/art_beb12a18094a4cfd8cd634417764d0cf.htmlhttps://www.miit.gov.cn/zwgk/zcwj/wjfb/tg/art/2023/art_beb12a18094a4cfd8cd634417764d0cf.html.
SUN Y,LI Y,QI Y,et al. Microstructure and mechanical properties of welded joints between nickel base alloy and 10Ni5CrMoV steel by MIG welding[J]. Materials Letters,2022,328:133120.
Faeze M N,Ehsan B,Ebrahim A. Performance assessment of a solar hydrogen and electricity production plant using high temperature PEM electrolyzer and energy storage[J]. Science Direct,2018:5820-5831.
Wells C,Minunno R,Chong H Y. Morrison GM. Strategies for the Adoption of Hydrogen-Based Energy Storage Systems: An Exploratory Study in Australia[J]. Energies,2022,15(16):6015.
程伟,杨哲,杨晗,等. 高品质Inconel625焊丝生产工艺探究[J]. 金属世界,2020(04):68-71.
CHENG W,YANG Z,YANG H,et al. Production Process of High Quality Inconel625 Welding Wire[J]. Metal World,2020(04):68-71.
赵雅萱,王少刚,庄国祥,等. 高Cr镍基合金焊丝的制备工艺及其组织与性能[J]. 有色金属加工,2017,46(05):22-28.
ZHAO Y X,WANG S G,ZHUANG G X,et al. Preparation Process and Properties of Nickel-base Alloy Welding Wire with High Cr Content[J]. Nonferrous Metals Processing,2017,46(05):22-28.
袁珊珊,刘海定,王小岩,等. 国产ERNiCrMo-3镍基合金焊丝热加工成型技术研究[J]. 电焊机,2021,51(12):111-115.
YUAN S S,LIU H D,WANG X Y,et al. Study on thermoforming technology of ERNiCrMo-3 nickel-based alloy welding wire[J].Electric Welding Machine,2021,51(12):111-115.
刘毓斌. 影响焊丝翘距和松弛直径的因素及解决方法[J]. 金属制品,2003(04):32-33.
LIU Y B. Factors and solutions affecting wire pitch and relaxation diameter[J].Metal Products,2003(04):32-33.
YUAN J F,XIAO Y,MIN N,et al. The Influence of Precipitate Morphology on the Growth of Austenite Grain in Nb-Ti-Al Microalloyed Steels[J]. Materials,2022,15(9):3176.
马元俊. 梯度结构Inconel 625合金组织演变及其性能调控[D]. 甘肃:兰州理工大学,2022.
MA Y J. Microstructure evolution and property regulation of gradient structured Inconel 625 superalloy[D].Gansu: Lanzhou University of Technology,2022.
牛刚. 超高强奥氏体钢的多尺度组织调控及强韧化机制[D].北京:北京科技大学,2020.
NIU G.Multi-scale licrostructure Control and Strength-
ening-Toughening Mechanism of Ultra-highStrength Austenitic Steel[D]. Beijing:University of Science and Technology Beijing,2020.
BIROSCA S. Crystallographic Orientation Relationship with Geometrically Necessary Dislocation Accumulation During High-Temperature Deformation in RR1000 Nickel-Based Superalloy[J]. Metallurgical and Materials Transactions A,2019,50(2):534-539.
LI Y,DAI L,CAO Y,et al. Grain size effect on deformation twin thickness in a nanocrystalline metal with low stacking-fault energy[J]. Journal of Materials Research,2019,34(13):2398-2405.
EGAN A J,XUE F,RAO Y,et al. Local Phase Transformation Strengthening at Microtwin Boundaries in Nickel-Based Superalloys[J]. Acta Materialia,2022,238:118206.
NEMBACH E,PESICKA J,LANGMAACK E. The high-temperature decrease of the yield strength of the γ' strengthened superalloys NIMONIC PE16 and NIMONIC 105[J]. Materials Science and Engineering:A,2003,362(1):264-273.
LEE J,KIM H,JEONG K,et al. Prediction of precipitation kinetics and strengthening in FeMnAlC lightweight steels[J]. Journal of Materials Research and Technology,2021,14:2897-2908.
LI S,LI J Y,JIANG Z W,et al. Controlling the columnar-to-equiaxed transition during Directed Energy Deposition of Inconel 625[J]. Additive Manufacturing,2022,57:102958.
陈国良.高温合金学[M]. 北京: 冶金工业出版社, 1988:195.
相关作者
相关机构