选区激光熔化制备CuCrZr合金致密化行为与组织性能调控研究
Study on Formation and Microstructural Properties of CuCrZr Alloys Prepared by Selective Laser Melting
- 2024年54卷第7期 页码:12-19
纸质出版日期: 2024-07-25
DOI: 10.7512/j.issn.1001-2303.2024.07.02
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2024-07-25 ,
扫 描 看 全 文
宋峻岭,李怀学,范宏举,等.选区激光熔化制备CuCrZr合金致密化行为与组织性能调控研究[J].电焊机,2024,54(7):12-19.
SONG Junling, LI Huaixue, FAN Hongju, et al.Study on Formation and Microstructural Properties of CuCrZr Alloys Prepared by Selective Laser Melting[J].Electric Welding Machine, 2024, 54(7): 12-19.
CuCrZr合金具有优良的导热性和导电性,且兼具良好的力学性能,在航空航天、核反应堆部件等领域有着重要应用。对选区激光熔化(SLM)制备CuCrZr合金的成形性能进行了分析,主要考虑激光功率、扫描速度和扫描间距3个主要工艺参数对合金成形致密度、显微组织和显微硬度的影响。研究结果表明,SLM制备的CuCrZr合金孔隙主要以粉末未完全熔化和气孔为主,当体积能量密度升高时,孔隙类型逐渐由粉末未熔化向气孔转变。扫描间距为0.12 mm时合金致密度优于扫描间距为0.09 mm的合金,最佳工艺为激光功率360 W,扫描速度800 mm/s,扫描间距0.12 mm和层厚0.03 mm,此时致密度可达99.30%,其体积能量密度为125 J/mm
3
。合金组织呈大晶粒包围小晶粒的特征,晶粒形状不规则、随机分布,体现了 SLM 成形过程中不均匀温度场引起的晶粒生长的各向异性。不同构建方向上组织形貌差异明显,XY面以等轴晶为主,XZ面则出现大量沿构建方向生长的柱状晶。此外,工艺参数对SLM成形CuCrZr合金的显微硬度值影响不明显,致密度对硬度的影响更为显著。细小晶粒或细长晶粒聚集处的硬度值较高。SLM技术可以用于制备高性能CuCrZr合金,通过优化工艺参数可以获得高致密度、细小均匀的显微组织和高硬度。
The CuCrZr alloy possesses excellent thermal and electrical conductivity
as well as good mechanical properties
making it an imp
ortant material for aerospace
nuclear reactor components
and other fields. This study analyzes the forming performance of CuCrZr alloy prepared by selective laser melting (SLM)
focusing on the effects of three main process parameters—laser power
scanning speed
and scanning spacing—on the alloy’s density
microstructure
and microhardness. The research indicates that the pores in SLM-formed CuCrZr alloys are primarily caused by incomplete powder melting and gas pores. As the volumetric energy density increases
the pore type gradually transitions from powder melting incompleteness to gas pores. The alloy exhibits higher density when the scanning spacing is 0.12 mm compared to 0.09 mm. The optimal process parameters are 360 W laser power
800 mm/s scanning speed
0.12 mm scanning spacing
and 0.03 mm layer thickness
achieving a density of 99.30% with a volumetric energy density of 125 J/mm
3
. The microstructure of the alloy features large grains surrounding smaller grains
with irregular and randomly distributed grain shapes
reflecting the anisotropy of grain growth caused by the non-uniform temperature field during SLM forming. The microstructure morphology differs significantly in different building directions
with equiaxed grains dominating on the XY plane
while the XZ plane shows a large number of columnar grains growing along the building direction. Additionally
the process parameters have a minimal impact on the microhardness value of SLM-formed CuCrZr alloys
with density exerting a more significant influence on hardness. Higher hardness values are observed in areas with finer or elongated grain aggregation. SLM technology can be utilized to fabricate high-performance CuCrZr alloys
and optimizing process parameters can result in high density
fine and uniform microstructure
and high hardness.
选区激光熔化CuCrZr合金成形性能显微组织硬度
SLMCuCrZr alloyforming performancemicrostructureshardness
Ingo G M,Riccucci C,Giuliani C,et al. Surface studies of patinas and metallurgical features of uncommon high-tin bronze artefacts from the Italic necropolises of ancient Abruzzo (Central Italy)[J]. Applied Surface Science,2019,470:74-83.
Gu R,Yao X,Wang D,et al. Selective laser melting of Cu-10Sn-0.4P:Processing,microstructure,properties,and brief comparison with additively manufactured Cu-10Sn[J]. Advanced Engineering Materials,2022,24(2):2100716.
周吉强,黄玉山,佟鑫,等. CuCrZr合金选区激光熔化成形工艺与力学性能研究[J]. 应用激光,2022,42(03):43-52.
ZHOU J Q,HUANG Y S,TONG X,et al. Study on Selective Laser Melting Forming Process and Mechanical Properties of CuCrZr Alloy[J]. Applied Laser,2022,42(03):43-52.
Kalinin G M,Ivanov A D,Obushev A N,et al. Ageing effect on the properties of CuCrZr alloy used for the ITER HHF components[J]. Journal of Nuclear Materials,2007,367:920-924.
卓海鸥,唐建成,叶楠. 高强高导铜合金制备方法的研究热点及发展趋势[J].热加工工艺,2016,45(03):5-10.
ZHUO H O,TANG J C,YE N. Research Hotspots and Development Trends of High Strength and High Conductivity Copper Alloys Preparation Methods [J]. Heat Treatment Technology,2016,45(03):5-10.
Liu Q,Zhang X,Ge Y,et al. Effect of processing and heat treatment on behavior of Cu-Cr-Zr alloys to railway contact wire[J]. Metallurgical and Materials Transactions A,2006,37:3233-3238.
姜锋,陈小波,娄花芬,等. 火箭发动机燃烧室用高强高导Cu-0.8Cr-0.2Zr合金的组织与性能[J]. 宇航学报,2008,29(6):2030-2035.
JIANG F,CHEN X B,LOU H F,et al. Microstructure and Properties of High Strength and High Conductivity Cu-0.8Cr-0.2Zr Alloy for Rocket Engine Combustion Chamber[J]. Acta Astronautica,2008,29(6):2030-2035.
陈昱,杨晓红,李雪健,等. Zr添加方式及加入量对CuCrZr 合金组织与性能的影响[J]. 热加工工艺,2017,46(15):90-93
CHEN Y,YANG X H,LI X J,et al. Effects of Zr Addition Method and Amount on Microstructure and Properties of CuCrZr Alloy[J]. Heat Treatment Technology,2017,46(15):90-93.
Fu H,Xu S,Li W,et al. Effect of rolling and aging processes on microstructure and properties of Cu-Cr-Zr alloy[J]. Materials Science and Engineering:A,2017,700:107-115.
Mishnev R,Shakhova I,Belyakov A,et al. Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu-Cr-Zr alloy[J]. Materials Science and Engineering: A,2015,629:29-40.
Zhilyaev A P,Morozova A,Cabrera J M,et al. Wear resistance and electroconductivity in a Cu-0.3Cr-0.5Zr alloy processed by ECAP[J]. Journal of Materials Science,2017,52:305-313.
Wang J,Ke X,Wang M. Detecting the topological charge of partially coherent electromagnetic vortex beams through the orientation angle of polarization[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2019,228:11-16.
Dadbakhsh S,Hao L. Effect of Al alloys on selective laser melting behaviour and microstructure of in situ formed particle reinforced composites[J]. Journal of Alloys and Compounds,2012,541:328-334.
Singh R,Gupta A,Tripathi O,et al. Powder bed fusion process in additive manufacturing:An overview[J]. Materials Today:Proceedings,2020,26(2):3058-3070.
Quintino L,Costa A,Miranda R. Welding with high power fiber lasers-a preliminary study[J]. Materials & Design,2007,28(4):1231-1237.
Popovich A,Sufiiarov V,Polozov I,et al. Microstructure and mechanical properties of additive manufactured copper alloy[J]. Materials Letters,2016,179:38-41.
Ma Z,Zhang K,Ren Z,et al. Selective laser melting of Cu-Cr-Zr copper alloy:Parameter optimization, microstructure and mechanical properties[J]. Journal of Alloys and Compounds,2020,828:154350.
Guan P,Chen X,Liu P,et al. Effect of selective laser melting process parameters and aging heat treatment on properties of CuCrZr alloy[J]. Materials Research Express,2019,6(11):1165c1.
Uchida S,Kimura T,Nakamoto T,et al. Microstructures and electrical and mechanical properties of Cu-Cr alloys fabricated by selective laser melting[J]. Materials & Design,2019,175:107815.
Bai Y,Zhao C,Zhang Y,et al. Additively manufactured CuCrZr alloy:Microstructure, mechanical properties and machinability[J]. Materials Science and Engineering:A,2021,819:141528.
Wallis C,Buchmayr B. Effect of heat treatments on microstructure and properties of CuCrZr produced by laser-powder bed fusion[J]. Materials Science and Engineering:A,2019,744:215-223.
Papazoglou E L,Karkalos N E,Karmiris O P,et al. On the modeling and simulation of SLM and SLS for metal and polymer powders: A review[J]. Archives of Computational Methods in Engineering,2022,29:941-973.
Gu D,Hagedorn Y C,Meiners W,et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta materialia,2012,60(9):3849-3860.
欧远辉,王迪,刘林青,等. 激光选区熔 化成形CuCrZr合金导电率提升机理研究[J]. 机械工程学报,2022,58(17):297-308.
OU Y H,WANG D,LIU L Q,et al. Mechanism Study on Conductivity Improvement of CuCrZr Alloy Formed by Selective Laser Melting[J]. Journal of Mechanical Engineering,2022,58(17):297-308.
相关作者
相关机构