12 mm厚TC4钛合金激光-MIG复合焊接头疲劳裂纹扩展行为研究
Study on Fatigue Crack Growth Behavior of 12mm Thick TC4 Titanium Alloy Laser-MIG Hybrid Weld Joint
- 2024年54卷第10期 页码:17-31
纸质出版日期: 2024-10-25
DOI: 10.7512/j.issn.1001-2303.2024.10.03
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-10-25 ,
移动端阅览
王洪潇,王春生,邓钢,等.12 mm厚TC4钛合金激光-MIG复合焊接头疲劳裂纹扩展行为研究[J].电焊机,2024,54(10):17-31.
WANG Hongxiao, WANG Chunsheng, DENG Gang, et al.Study on Fatigue Crack Growth Behavior of 12mm Thick TC4 Titanium Alloy Laser-MIG Hybrid Weld Joint[J].Electric Welding Machine, 2024, 54(10): 17-31.
为探究12 mm厚TC4钛合金激光-MIG复合焊接头在不同区域的疲劳裂纹扩展行为,并分析微观组织与裂纹扩展之间的相互作用。利用体式显微镜、相显微镜、扫描电子显微镜和电子背散射衍射技术分别对接头不同部位的裂纹扩展速率,裂纹扩展路径的变化,接头不同区域的显微组织与裂纹扩展的交互作用和裂纹尖端周边组织的变形特征进行了深入探究。结果表明,在裂纹稳定扩展阶段,母材区域的裂纹扩展速率最大,分别是热影响区和焊缝区域裂纹扩展速率的1.16倍和1.81倍。当Δ
K
=20 MPa·m
1/2
,母材裂纹扩展速率为3.39×10
-4
mm/cycle。裂纹尖端的IPF图表明,在焊缝区中存在的50°~70°的大角度晶界占比为36.36%,高于母材的11.91%和热影响区的11.65%,大角度晶界的存在使裂纹沿晶界偏转或消耗更多能量穿过晶界,增大裂纹扩展阻力,表现出较好的裂纹扩展抗性。母材和热影响区表现出沿晶脆性断裂和韧性断裂的混合断裂模式,而焊缝区主要呈韧性断裂模式。此外,EBSD分析结果表明,焊缝区裂纹尖端附近具有更高的几何位错密度,位错在马氏体边界聚集,导致裂纹沿晶界发生偏转,进一步阻碍了裂纹的扩展。施密特因子分析也表明,焊缝区组织间的取向差差异较大,导致其裂纹扩展门槛值较高。综上,焊缝区中存在的大量大角度晶界和高位错密度是焊缝区具有较高裂纹扩展抗性的主要原因。
The study aims to investigate the fatigue crack growth behavior in different regions of a 12 mm thick TC4 titanium alloy laser-MIG hyb
rid welded joint and to analyze the interaction between microstructure and crack growth. Volume microscopy
phase microscopy
scanning electron microscopy
and electron backscatter diffraction (EBSD) techniques were used to explore the crack growth rates in different parts of the joint
the changes in crack growth paths
the interaction between microstructure and crack growth in different joint regions
and the deformation characteristics of the tissue around the crack tip. The results show that in the stable crack growth phase
the crack growth rate in the base metal area is the highest
which is 1.16 times and 1.81 times that of the heat-affected zone and the weld zone
respectively. When Δ
K
= 20 MPa·m
1/2
the crack growth rate in the base metal is 3.39×10
-4
mm/cycle. The IPF map at the crack tip indicates that the proportion of large-angle grain boundaries in the weld zone is 36.36%
which is higher than the 11.91% in the base metal and the 11.65% in the heat-affected zone. The presence of large-angle grain boundaries causes the crack to deflect along the grain boundaries or consume more energy to pass through the grain boundaries
increasing the crack growth resistance and showing better crack growth resistance. The base metal and heat-affected zone exhibit a mixed fracture mode of intergranular brittle fracture and ductile fracture
while the weld zone mainly shows a ductile fracture mode. In addition
EBSD analysis results show that the weld zone near the crack tip has a higher geometric dislocation density
and dislocations accumulate at the martensite boundary
causing the crack to deflect along the grain boundary
further hindering crack growth. Schmidt factor analysis also shows that the difference in orientation between the weld zone tissues is large
resulting in a higher crack growth threshold. In conclusion
the presence of a large number of large-angle grain boundaries and high dislocation density in the weld zone is the main reason for the higher crack growth
resistance in the weld zone.
钛合金疲劳裂纹扩展激光-MIG 复合焊接断裂模式裂纹尖端裂纹扩展行为
titanium alloyfatigue crack growthlaser-MIG hybrid weldingfracture modecrack tipcrack growth behavior
黄旭, 朱知寿, 王红红. 先进航空钛合金材料与应用[M]. 北京:国防工业出版社,2012.
GUO F Y,ZHANG Y,LIU J,et al. Metallurgical and mechanical characterization of pure titanium thick welds made using laser narrow gap welding process[J]. Journal of Materials Engineering and Performance, 2021,30(12):8859-8871.
QIU G Z,GUO Y F. Current situation and development trend of titanium metal industry in China[J]. International Journal of Minerals,Metallurgy and Materials,2022,29(4):599-610.
方乃文,黄瑞生,闫德俊,等. 低镍含氮奥氏体不锈钢激光-电弧焊电弧特性及组织性能[J]. 焊接学报,2021,42(1):70-75.
FANG N W,HUANG R S,YAN D J,et al. Arc characteristics and microstructure properties of low-nickel nitrogen-containing austenitic stainless steel laser-arc welding[J]. Transactions of China Welding,2021,42(1):70-75.
YU J,CAI C,XIE J,et al. Weld formation, arc behavior, and droplet transfer in narrow-gap laser-arc hybrid welding of titanium alloy[J]. Journal of Manufacturing Processes,2023,91:44-52.
BUNAZIV I,AKSELSEN O M,FROSTEVARG J,et al. Deep penetration fiber laser-arc hybrid welding of thick HSLA steel[J]. Journal of Materials Processing Technology,2018,256:216-228.
郭萍. TC4-DT钛合金损伤行为研究[D]. 陕西: 西北工业大学,2015.
GUO P. Study on damage behavior of TC4-DT titanium alloy[D]. Shanxi: Northwestern Polytechnical University,2015.
陈小进. TC4-DT钛合金电子束焊接接头裂纹萌生数值模拟及试验研究[D]. 江苏:南京航空航天大学,2017.
CHEN X J. Numerical simulation and experimental study on crack initiation in electron beam welded joints of TC4-DT titanium alloy[D]. Jiangsu:Nanjing University of Aeronautics and Astronautics,2017.
曹祖涵. TC4-DT钛合金断裂韧性的组织相关性及其模型预测[D]. 山西:太原理工大学,2022.
CAO Z H. Correlation between microstructure and fracture toughness of TC4-DT titanium alloy and its model prediction[D]. Shanxi:Taiyuan University of Technology,2022.
ZHU L,HU X T,JIANG R,et al. Initiation and propagation behaviors of small fatigue crack in titanium alloy TC4[J].Key Engineering Materials,2019,795:9-14.
回丽. 钛合金焊接结构疲劳短裂纹行为研究[D]. 辽宁:东北大学,2004.
HUI L. tudy on fatigue short crack behavior of titanium alloy welded structure[D]. Liaoning:Northeastern University,2004.
CAIN V,THIJS L,HUMBEECK J V,et al. Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting[J]. Additive Manufacturing,2015,5:68-76.
LV H,ZHANG Z L,CHEN Y R,et al. The anisotropy of high cycle fatigue property and fatigue crack growth behavior of Ti-6Al-4V alloy fabricated by high-power laser metal deposition[J]. Materials Science and Engineering A,2022,853:143745.
徐宇飞,胡殿印,米栋,等. 选区激光熔化TC4小裂纹扩展特性数值模拟[J]. 航空动力学报,2021,36(12):2515-2523.
XU Y F,HU D Y,MI D,et al. Numerical simulation of small crack propagation characteristics of TC4 alloy by selective laser melting[J]. Journal of Aerospace Power,2021,36(12):2515-2523.
CHANG L,KITAMURA T,ZHOU C Y,et al. Comparison of anisotropic crack tip behavior in hcp titanium by two-dimensional and three-dimensional atomistic simulations[J]. Theoretical and Applied Fracture Mechanics,2021,113:102938.
武亮亮,焦泽辉,于慧臣. 激光选区熔化TC4合金小裂纹扩展行为[J]. 材料工程,2023,51(6):83-92.
WU L L,JIAO Z H,YU H C. Study on the propagation behavior of small cracks in TC4 alloy by laser selective melting[J].Materials Engineering,2023,51(6):83-92.
LI J,SU C Y,LU L,et al. Investigation on fatigue crack growth behavior for commercial pure titanium at different crack tip plastic deformed levels[J]. Theoretical and Applied Fracture Mechanics,2019,100:1-13.
REN J Q,LI L,WANG Q,et al. Effect of environmental media on the growth rate of fatigue crack in TC4 titanium alloy: Seawater and air[J]. Corrosion Science,2024,230:111941.
全国钢标准化技术委员会. 金属材料 疲劳试验 疲劳裂纹扩展方法:GB/T 6398—2017[S]. 北京:中国标准出版社,2017.
YANG T,XIAO Y H,ZHUANG Y,et al. Effect of microstructural heterogeneity on corrosion fatigue crack growth behavior of 60 mm thick plate TC4 titanium alloy NG-GTAW welded joint[J]. International Journal of Fatigue,2022,163:107030.
LIU Y Q,LI Y X,CHEN H,et al. Fatigue crack propagation characteristics of aluminum/steel laser-metal inert gas fusion-brazed joints in different micro-zones[J].International Journal of Fatigue,2024,183:108261.
PIPPAN R,HOHENWARTER A. Fatigue crack closure: a review of the physical phenomena[J]. Fatigue & Fracture of Engineering Materials & Sturctures,2017,40(4):471-495.
ZERBST U,MADIA M,KLINGER C,et al. Defects as a root cause of fatigue failure of metallic components. II: Non-metallic inclusions[J]. Engineering Failure Analysis,2019,98:228-239.
LARID C. The influence of metallurgical structure on the mechanisms of fatigue crack propagation[J]. Fatigue crack propagation, ASTM International,1967.
ZHAI T,WILKINSON A J,MARTIN J W. A crystallographic mechanism for fatigue crack propagation through grain boundaries[J]. Acta Materialia,2000, 4(20):4917-4927.
CHANDRAVANSHI V,PRASAD K,SINGH V,et al. Effects of α+β phase deformation on microstructure fatigue and dwell fatigue behavior of a near alpha titanium[J]. Journal of Fatigue,2016,91: 100-109.
CHEN Y,FENG J,LI L,et al. Microstructure and mechanical properties of a thick-section high-strength steel welded joint by novel double-side fibre laser-arc welding[J]. Materials Science & Engineering A,2013,582:284-293.
肖友恒. 大厚板TC4钛合金窄间隙GTAW焊接接头腐蚀疲劳裂纹扩展行为研究[D]. 四川:西南交通大学,2022.
XIAO Y H. Study on the corrosion fatigue crack growth behavior of thick plate TC4 titanium alloy narrow gap GTAW welded joint[D]. Sichuan:Southwest Jiaotong University,2022.
刘俊峰. 厚板钛合金窄间隙激光-电弧复合焊接电弧行为及接头强化机制[D]. 四川:西南交通大学,2023.
LIU J F. Study on arc behavior and joint strengthening mechanism of thick plate titanium alloy narrow gap laser-arc hybrid welding[D]. Sichuan:Southwest Jiaotong University,2023.
相关作者
相关机构