Al-Mg-Sc-Zr高强铝合金电弧增材修复工艺及组织性能研究
Research on Arc Additive Repair Process and Microstructure and Properties of Al-Mg-Sc-Zr High Strength Aluminum Alloy
- 2024年54卷第9期 页码:77-84
纸质出版日期: 2024-09-25
DOI: 10.7512/j.issn.1001-2303.2024.09.10
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-09-25 ,
移动端阅览
马俊成,任欣,祝弘滨,等.Al-Mg-Sc-Zr高强铝合金电弧增材修复工艺及组织性能研究[J].电焊机,2024,54(9):77-84.
MA Juncheng, REN Xin, ZHU Hongbin, et al.Research on Arc Additive Repair Process and Microstructure andProperties of Al-Mg-Sc-Zr High Strength Aluminum Alloy[J].Electric Welding Machine, 2024, 54(9): 77-84.
针对Al-Mg-Sc-Zr高强铝合金焊丝,分别采用脉冲CMT(CMT-P)、脉冲MIG(MIG-P)与变极性TIG(TIG-V)对轨道交通常用5083铝合金材料进行修复,对比研究不同电弧增材工艺修复样件的微观组织及力学性能。结果表明:Al-Mg-Sc-Zr高强铝合金焊丝在三种电弧增材修复工艺下均能形成细小的等轴晶组织,且焊缝区分布着大量Al
3
(Sc,Zr)粒子,这些粒子能够有效细化晶粒尺寸并提高力学性能。修复样件抗拉强度均可达母材强度的90%以上,其中,CMT-P热输入最小,基体强度受热输入影响损失最小,仅1.3%,修复的5083铝合金抗拉强度为293 MPa,达到母材强度的94%;TIG-V及MIG-P热输入相对较大,修复后抗拉强度分别为283 MPa、290 MPa,但基材强度受热影响损失较大,分别为16%、8.7%。
The text discusses the reparation of commonly used 5083 aluminum alloy materials for railway transportation using Al-Mg-Sc-Zr high-strength aluminum alloy welding wires. The study compares the microstructure and mechanical properties of different process-repaired samples using pulse CMT (CMT-P) and pulse MIG (MIG-P) melting pole arc welding
as well as non-melting pole arc welding with variable polarity TIG (TIG-V).
Results
2
show that the repaired areas formed by different arc repairprocesses using Al-Mg-Sc-Zr high-strength aluminum alloys are distributed with a large number of Al
3
(Sc
Zr) particles
which significantly refine the grain structure of the repaired area. In addition
all repaired specimens have tensile strengths above 90% of the base materials. Among them
CMT-P has the smallest heat input
causing minimal loss to matrix strength due to thermal cycling
at only 1.3%. The repaired 5083 aluminum alloy using this method gets a tensile strength as high as 293 MPa
which reaches 94% of the base material's strength; TIG-V and MIG-P have relatively larger heat inputs and achieve 283 MPa and 290 MPa tensile strengths after being repaired respectively. However
both methods result in greater losses to matrix strength due to thermal cycling
about 16% and 8.7% respectively.
Al-Mg-Sc-Zr高强铝合金电弧增材修复工艺显微组织力学性能
Al-Mg-Sc-Zr high strength aluminum alloyarc additive repair processmicrostructuremechanical properties
Suryawanshi J,Prashanth K G,Scudino S,et al. Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting[J]. Acta Materialia, 2016,115:285-294.
Li X P,Ji G,Chen Z,et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility[J]. Acta Materialia,2017,129:183-193.
Thijs L,Kempen K,Kruth J P,et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia,2013,61(5):1809-1819.
Prashanth K G,Scudino S,Eckert J. Defining the tensile properties of Al-12Si parts produced by selective laser melting[J]. Acta Materialia,2017,126:25-35.
丁莹,杨海欧,白静,等. 激光立体成形AlSi10Mg合金的微观组织及力学性能[J]. 中国表面工程,2018,31(04):46-54.
DING Y,YANG H O,BAI J,et al. Microstructure and mechanical property of AlSi10Mg alloy prepared by laser solid forming[J]. China Surface Engineering,2018,31(04):46-54.
Zhang H,Zhu H H,Nie X J,et al. Effect of Zirconium addition on crack,microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy[J]. Scripta Materialia,2017,134:6-10.
Shyam A,Roy S,Shin D,et al. Elevated temperature microstructural stability in cast AlCuMnZr alloys through solute segregation[J]. Materials Science and Engineering:A,2019,765:138279.
Tan Q,Zhang J,Sun Q,et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles[J]. Acta Materialia,2020,196:1-16.
Spierings A B,Dawson K,Heeling T,et al. Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting[J]. Materials & Design,2017,115:52-63.
Spierings A B,Dawson K,Kern K,et al. SLM-processed Sc- and Zr- modified Al-Mg alloy:Mechanical properties and microstructural effects of heat treatment[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2017,701:264-273.
Li R D,Wang M B,Li Z,et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting:Crack-inhibiting and multiple strengthening mechanisms[J]. Acta Materialia,2020,193:83-98.
Li R D,Chen H,Zhu H,et al. Effect of aging treatment on the microstructure and mechanical properties of Al-3.02Mg-0.2Sc-0.1Zr alloy printed by selective laser melting[J]. Materials & Design,2019,168:107668.
Li R D,Chen H,Chen C,et al. Selective Laser Melting of Gas Atomized Al-3.02Mg-0.2Sc-0.1Zr Alloy Powder: Microstructure and Mechanical Properties[J]. Advanced Engineering Materials,2019,21(3):1800650.
祝弘滨,华倩,李瑞迪,等. 激光定向能量沉积增材修复5083铝合金组织与力学性能[J]. 粉末冶金材料科学与工程,2022,27(01):45-55.
ZHU H B,HUA Q,LI R D,et al. Microstructures and mechanical properties of 5083 aluminum alloy repaired by laser directed energy deposition[J]. Materials Science and Engineering of Powder Metallurgy,2022,27(01):45-55.
祝弘滨,任欣,折洁,等. 激光熔覆修复5083铝合金组织和力学性能研究[J].机车车辆工艺,2022(02):1-5.
ZHU H B,REN X,SHE J, et al. Structure of 5083 aluminum alloy restored with laser cladding and its mechanical property study[J]. Locomotive & Rolling Stock Technology,2022(02):1-5.
林泽桓,李瑞迪,祝弘滨,等. 送粉式激光增材制造Al-Mg-Sc-Zr合金的微观组织与力学性能[J]. 中南大学学报(自然科学版),2020,51(11):3055-3063.
LIN Z H,LI R D,ZHU H B,et al. Microstructure and mechanical properties of Al-Mg-Sc-Zr alloy by powder feeding laser additive manufacturing[J]. Journal of Central South University (Science and Technology),2022(02):1-5.
唐皓州,李瑞迪,祝弘滨,等. Al-Mg-Sc合金粉末激光定向沉积修复Al-Zn-Mg-Cu铝合金基板的组织及力学性能[J]. 粉末冶金材料科学与工程,2022,27(01):111-120.
TANG H Z,LI R D,ZHU H B,et al. Microstructure and mechanical property of Al-Zn-Mg-Cu aluminum alloy substrate repaired by laser directed energy deposition with Al-Mg-Sc alloy powder[J]. Materials Science and Engineering of Powder Metallurgy,2022,27(01):111-120.
方学伟,杨健楠,陈瑞凯,等. 铝合金电弧增材制造技术研究进展[J]. 电焊机,2023,53(2):52-67.
FANG X W,YANG J N,CHEN R K,et al. Research progress of wire arc additive manufacturing technology for aluminum alloy[J]. Electric Welding Machine,2023,53(2):52-67.
Bai J Y,Yang C L,Lin S B,et al. Mechanical properties of 2219-Al components produced by additive manufacturing with TIG[J]. International Journal of Advanced Manufacturing Technology,2013,86(1-4):479-485.
Bai J Y,Fan C L,Lin S B,et al. Mechanical properties and fracture behaviors of GTA-additive manufactured 2219-Al after an especial heat treatment[J]. Journal of Materials Engineering and Performance,2017,26(4):1808-1816.
Horgar A,Fostervoll H,Nyhus B,et al. Additive manufacturing using WAAM with AA5183 wire[J]. Journal of Materials Processing Technology,2018,259:68-74.
郝婷婷,李承德,王旭,等. 钇含量对电弧增材制造2319铝合金组织与性能的影响[J]. 焊接学报,2022,43(7):49-56,115-116.
HAO T T,LI C D,WANG X,et al. Effect of yttrium content on microstructure and properties of 2319 aluminum alloy fabricated by wire arc additive manufacturing[J]. Transactions of the China Welding Institution,2022,43(7):49-56.
Klein T,Schnall M,Gomes B,et al. Wire-arc additive manufacturing of a novel high performance Al-Zn-Mg-Cu alloy:Processing, characterization and feasibility demonstration[J]. Additive Manufacturing,2021,37:101663.
相关作者
相关机构