薄壁异质铝合金MIG角焊缝热裂纹萌生机理研究
Research on the Mechanism of Hot Crack Initiation in Thin-walled Heterogeneous Aluminum Alloy MIG Fillet Welds
- 2024年54卷第9期 页码:38-46
纸质出版日期: 2024-09-25
DOI: 10.7512/j.issn.1001-2303.2024.09.05
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-09-25 ,
移动端阅览
胡亮,林森,韩晓辉.薄壁异质铝合金MIG角焊缝热裂纹萌生机理研究[J].电焊机,2024,54(9):38-46.
HU Liang, LIN Sen, HAN Xiaohui.Research on the Mechanism of Hot Crack Initiation in Thin-walled Heterogeneous Aluminum Alloy MIG Fillet Welds[J].Electric Welding Machine, 2024, 54(9): 38-46.
为研究焊接热裂纹萌生机理,以薄壁7003铝合金型材与6111铝合金板材MIG焊接所得角焊缝裂纹失效件为研究对象,采用渗透探伤、金相观察、扫描电镜、能谱分析、硬度分布等手段分析了焊接裂纹的萌生机制。研究结果表明:位于板材侧的焊接裂纹1、2均为液化裂纹,其长度分别为4 235.2 μm和1 357.4 μm,且裂纹2距焊缝边缘最近距离约为165 μm;型材侧和板材侧的硬度分布的数值方差分别为7.66和76.89,板材侧波动更大且硬度最大差值达34.32 HV,表明板材受焊接热影响组织与性能恶化更为严重;能谱分析表明裂纹周围的杂质相为沿晶偏聚分布的硬脆AlFeSi低熔点共晶相,其熔化温度低于铝合金熔点且会导致晶界韧性降低,熔化后形成晶间液膜受焊接收缩应力影响易被撕裂导致沿晶液化裂纹的萌生。通过对比分析焊前、焊中、焊后三种状态,研究了晶粒尺寸、焊接应力、低熔点杂质相对铝合金焊接液化裂纹产生机制差异性的影响。
To study the mechanism of welding hot cracking
the failed specimens of thin-walled 7003 aluminum alloy profile and 6111 aluminum alloy sheet MIG fillet weld cracks were taken as the research object
and the welding crack mechanism was analyzed by means of penetrant testing
metallographic observation
scanning electron microscope
energy spectrum analysis
hardness distribution and so on. The research results show that: the welding cracks 1 and 2 located on the sheet side are both liquefaction cracks
with lengths of 4 235.2 μm and 1 357.4 μm respectively
and the crack 2 is about 165 μm away from the nearest edge of the weld; the numerical variances of the hardness distribution on the profile side and the sheet side are 7.66 and 76.89 respectively
the sheet side fluctuates more and the maximum difference reaches 34.32HV
indicating that the sheet is more seriously deteriorated by the welding heat effect on the structure and performance; the energy spectrum analysis shows that the impurity phase around the crack is the brittle AlFeSi low melting point eutectic phase distributed along the grain boundary
which has a melting temperature lower than the melting point of aluminum alloy and will lead to the decrease of grain boundary toughness
and the formation of intergranular liquid film after melting is easily torn by the welding shrinkage stress
resulting in the initiation of intergranular liquefaction crack. By comparing and analyzing the three states of pre-welding
welding and post-welding
the effects of grain size
welding stress and low melting point impurity phase on the mechanism of aluminum alloy welding liquefaction crack were studied.
异种铝合金热裂纹焊接液化裂纹低熔点AlFeSi杂质相MIG焊
dissimilar aluminum alloyshot crackwelding liquefaction cracksthe low melting point impurity phase of AlFeSiMIG welding
吴国荣,黄诗雯,郭跃,等.面向碳中和的汽车生命周期材料发展与展望[J]. 材料导报,2023,37(19):1-8.
WU G R,HUANG S W,GUO Y,et al. Development and Prospect of Carbon Neutral Automotive Life-cycle Materials[J]. Materials Reports,2023,37(19):1-8.
LIN S,DANG J,WANG Z P,et al. Enhanced Strength and Toughness in Al-Mg-Si Alloys with Addition of Cr, Mn, and Cu Elements[J]. Journal of Materials Engineering and Performance,2023,32(3):1039-1050.
彭言言,吕晓春,徐锴,等.液化裂纹敏感性评价试验方法综述[J]. 电焊机,2023,53(1):15-24.
Peng Y Y,LV X C,XU K,et al. A Review of Test Methods for Evaluating on Liquation Cracking Susceptibility[J]. Electric Welding Machine,2023,53(1):15-24.
Liu H B,YANG S L,XIE C J,et al. Mechanisms of fatigue crack initiation and propagation in 6005A CMT welded joint[J]. Journal of Alloys and Compounds,2018,741:188-196.
杨健,骆顺存,裴鹏飞,等. 异种铝合金焊接研究现状及展望[J]. 电焊机,2023,53(5):1-11.
YANG J,LUO S C,PEI P F,et al. Research Status and Prospect of Dissimilar Aluminum Alloy Welding[J]. Electric Welding Machine,2023,53(5):1-11.
Sharahi H J,Pouranvari M,Movahedi M. Enhanced resistance to liquation cracking during fusion welding of cast magnesium alloys:Microstructure tailoring via friction stir processing pre-weld treatment[J]. Materials Science and Engineering A,2020,798:140-151.
俞照辉,严红革,严军辉,等. 热影响区连续孔隙状裂纹的表征及产生机理[J]. 焊接学报,2019,40(5):84-88.
YU Z H,YAN H G,YAN J H,et al. Characterization and formation mechanisms of continuous porosities-like cracks in the heat-affected zone[J]. Transactions of the China Welding Institution,2019,40(5):84-88.
Soysal T,Kou S. A Simple Test for Assessing Solidification Cracking Susceptibility and Checking Validity of Susceptibility Prediction[J]. Acta Materialia,2018,143:181-197.
Couto K B S,Claves S R,Van Geertruyden W H,et al. Effects of homogenization treatment on microstructure and hot ductility of aluminum alloy 6063[J]. Metal Science Journal,2005,21(2):263-268.
Yuan T,Chai X,Luo Z,et al. Predicting susceptibility of magnesium alloys to weld-edge cracking[J]. Acta Materialia,2015,90:242-251.
Sindo Kou,闫久春,杨建国,等. 焊接冶金学[M]. 北京:高等教育出版社,2012.
李红,闫维嘉,张禹,等. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程,2022,50(2):50-61.
LI H,YAN W J,ZHANF Y,et al. Research progress of hot crack in fusion welding of advanced aeronautical materials[J]. Journal of Materials Engineering,2022,50(2):50-61.
郝玉喜,徐伍刚,徐玉君,等. MIG焊接工艺对6XXX铝合金液化裂纹的影响[J]. 轻合金加工技术,2020,48(8):61-65.
HAO Y X,XU W G,Xu Y J,et al. Effect of MIG welding process on liquation cracking of 6XXX aluminum alloys[J]. Light Alloy Fabrication Technology,2020,48(8):61-65.
相关作者
相关机构