硬化模型对Ti80厚板焊接热-力耦合仿真计算的影响
Influence of Hardening Model on the Simulation Calculation of Thermal-Mechanical Coupling in Ti80 Thick Plate Welding
- 2024年54卷第8期 页码:51-64
纸质出版日期: 2024-08-25
DOI: 10.7512/j.issn.1001-2303.2024.08.07
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2024-08-25 ,
扫 描 看 全 文
郦羽,侯家怡,顾立君,等.硬化模型对Ti80厚板焊接热-力耦合仿真计算的影响[J].电焊机,2024,54(8):51-64.
LI Yu, HOU Jiayi, GU Lijun, et al.Influence of Hardening Model on the Simulation Calculation of Thermal-Mechanical Coupling in Ti80 Thick Plate Welding[J].Electric Welding Machine, 2024, 54(8): 51-64.
在船用Ti80钛合金厚板的多层多道焊接中,材料经历了多次热-力循环的作用,焊接接头需要考虑材料在循环载荷作用下的热塑性变形行为,而不同的塑性本构模型所表达的材料力学特性存在明显差别,因此材料塑性模型对焊接残余应力的模拟计算有着直接影响。文中通过对Ti80钛合金材料在不同温度(20~900 ℃)的拉伸试验以及不同温度(20~800 ℃)的低周疲劳试验,获得了Ti80钛合金材料的理想弹塑性模型、各向同性硬化模型、随动硬化模型和混合硬化模型的材料参数。采用不同硬化模型对Ti80焊接接头焊接残余应力进行模拟计算,并采用X射线测量残余应力,将获得的残余应力结果进行对比,分析不同硬化模型对焊接残余应力的影响。结果表明,理想塑性模型低估了残余应力的大小,各向同性硬化模型略微高估了熔池及其附近的残余应力大小,随动硬化模型与混合硬化模型残余应力计算值较为接近,前者略小,后者可较精确预测残余应力。从工程应用的角度来看,推荐各向同性应变硬化模型,该模型在残余应力预报的数值最大,使用该模型可以获得相对保守的预测值。
In the multi-layer and multi pass welding of marine Ti80 titanium alloy thick plates
the material has undergone multiple thermal-stress cycles. The welding joint needs to consider the thermoplastic deformation behavior of the material under cyclic loading
and different plastic constitutive models express quite differences in material mechanical properties. Therefore
the material plastic model has a direct impact on the simulation calculation of welding residual stress. This article obtains the material parameters of the ideal elastic-plastic model
isotropic hardening model
dynamic hardening model
and mixed hardening model of Ti80 titanium alloy material through tensile tests at different temperatures (20 ℃~900 ℃) and low cycle fatigue tests at different temperatures (20 ℃~800 ℃). Simulate and calculate the welding residual stress of Ti80 welded joints using different hardening models
and measure the residual stress using X-ray. Compare the obtained residual stress results and analyze the influence of different hardening models on welding residual stress. It can be concluded that the ideal plasticity model underestimates the magnitude of residual stress
while the isotropic hardening model slightly overestimates the magnitude of residual stress in the molten pool and its vicinity. The residual stress calculation values of the dynamic hardening model and the mixed hardening model are relatively close
with the former slightly smaller and the latter more accurately predicting residual stress. From the perspective of engineering applications
it is recommended to use an isotropic strain hardening model
which has the highest value in residual stress prediction. Using this model can obtain relatively conservative prediction values.
硬化模型Ti80钛合金焊接残余应力焊接工艺有限元计算
hardening modelTi80 titanium alloywelding residual stresswelding technologyfinite element calculation
郦羽, 阚甜甜,万正权,等. Ti80厚板焊接残余应力仿真[J]. 船舶工程,2022,44(10):134-141.
LI Y,KAN T T,WAN Z Q,et al. Simulation of residual stresses in Ti80 thick plate welding[J]. Shipbuilding Engineering,2022,44(10):134-141.
高琛,赵如涛,徐魁龙,等. 不同表面状态对Ti80合金动态与静态力学性能的影响[J]. 理化检验-物理分册,2023,59(12):6-11.
GAO C,ZHAO R T,XU K L,et al. he effect of surface conditions on the dynamic and static mechanical properties of Ti80 alloy[J]. Physics Testing and Chemical Analysis-Physical Section,2023,59(12):6-11.
Muránsky O,Hamelin C J,Smith M C,et al. The effect of plasticity theory on predicted residual stress fields in numerical weld analyses[J]. Computational Materials Science,2012,54:125-134.
Smith M C,Smith A C. Advances in weld residual stress prediction: A review of the NeT TG4 simulation round robins part 2, mechanical analyses[J]. International Journal of Pressure Vessels and Piping,2018,3(07):1-52.
张超华,王晓霞,常茂椿,等. 焊缝金属的屈服强度和材料的加工硬化对Q345钢焊接残余应力与变形计算精度的影响[J].机械工程学报,2021,57(10):160-168.
ZHANG C H,WANG X X,CHANG M C,et al. The effect of weld metal yield strength and material work hardening on the accuracy of Q345 steel welding residual stress and deformation calculation [J]. Journal of Mechanical Engineering,2021,57(10):160-168.
王重阳,韩世伟,谢峰,等. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报,2023,59(12):1613-1623.
WANG C Y,HAN S W,XIE F,et al. The effect of solid-state phase transformation and softening on the welding residual stress of ultra-high-strength steel [J]. Journal of Metals,2023,59(12):1613-1623.
GB/T 228.1-2021,金属材料拉伸试验[S]. 北京:国家质量监督局,2021.
GB/T 15248-2008,金属材料轴向等幅低循环疲劳试验方法[S]. 北京:国家质量监督局,2008.
Lemaitre J,Chaboche J L. Mechanics of solid materials[M]. UK:Cambridge University Press,1994.
陈无凡. 宏微观尺度下金属材料的循环塑性及时间相关特性研究[D]. 上海:上海交通大学,2019.
CHEN W F.Study of Cyclic Plasticity and Time-Dependence of Metals in Macro and Microscopic Scale[D]. Shanghai:Shanghai Jiaotong University,2019.
Armstrong PJ, Frederick CO. A mathematical representation of the multiaxial Bauschinger effect[J]. Materials at High Temperatures,2007,24(1):1-26.
Chaboche J L. Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel[C]//Translation of the 5th International Conference on Structural Mechanics in Reactor Technology,1979.
郝红. 2124-T851铝合金平均应力松弛行为与随机疲劳寿命估算研究[D]. 浙江:浙江大学,2018.
Marquis D. Cyclic plasticity model with nonlinear isotropic and kinematic hardening:NoLIKH model[M]. USA: Academic Press,2001.
Goldak J,Chakrabarti A P,Bibby M. A new finite element model for welding heat source[J]. Metallurgical and Materials Transactions B,1984(15):299-305.
Ahn J,He E,Chen L. Prediction and measurement of residual stresses and distortions in fiber laser welded Ti-6Al-4V considering phase transformation[J]. Materials & Design,2016(121):110-124.
李良碧,张素玉,孙凯祥,等. Ti80耐压球壳赤道焊缝残余应力研究[J]. 船舶力学,2021(7):43-52.
LI L B,ZHANG S Y,SUN K X,et al. Study on the residual stresses in the equatorial weld of Ti80 pressure vessel[J]. Shipbuilding Mechanics,2021(7):43-52.
编辑部网址:http://www.71dhj.comhttp://www.71dhj.com
相关作者
相关机构