Fe/W扩散焊界面原子扩散行为分子动力学模拟
Molecular Dynamics Simulation of Atomic Diffusion Behavior at Fe/W Interface
- 2024年54卷第8期 页码:36-44
纸质出版日期: 2024-08-25
DOI: 10.7512/j.issn.1001-2303.2024.08.05
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2024-08-25 ,
扫 描 看 全 文
宋奎晶,韦勇,张铭雨,等.Fe/W扩散焊界面原子扩散行为分子动力学模拟[J].电焊机,2024,54(8):36-44.
SONG Kuijing, WEI Yong, ZHANG Mingyu, et al.Molecular Dynamics Simulation of Atomic Diffusion Behavior at Fe/W Interface[J].Electric Welding Machine, 2024, 54(8): 36-44.
为研究扩散焊工艺参数对Fe/W界面原子扩散行为的影响,建立了Fe(100)/W(100)界面结构模型。采用分子动力学(MD)方法模拟了1 123~1 323 K下Fe/W界面处原子扩散,观察具体扩散情况并计算扩散系数。结果表明:Fe/W界面呈现明显的非对称扩散现象,主要为W原子向Fe原子中扩散,且模拟时间越长该现象越明显。径向分布函数(RDF)说明Fe侧原子整体排列有序度高于W侧。根据原子均方位移(MSD)曲线拟合得出原子扩散系数和扩散激活能,在1 123~1 323 K温度下,Fe、W原子在Fe/W界面的扩散激活能分别为1.326 eV和0.841 56 eV,W原子在Fe 晶格中扩散势能低于Fe原子在W晶格中扩散势能,更容易突破能垒发生扩散。扩散温度和压力升高可有效提升界面扩散层厚度。一定程度上提高界面粗糙度有利于界面扩散层厚度增长,但粗糙度过大也会影响界面焊合。扩散系数基础数据可为实际工业生产中低活化钢与面向第一壁材料钨的扩散连接界面组织调控提供理论依据。
To investigate the effect of process parameters on the atomic diffusion behavior at the Fe/W interface
a low index crystal plane Fe(100)/W(100) interface structure model was established. Molecular dynamics (MD) method was used to simulate atomic diffusion at the Fe/W interface at 1 123~1 323 K
and the specific diffusion situation was observed and the diffusion coefficient was calculated.
Results
2
indicate that there is a significant asymmetric diffusion phenomenon at the Fe/W interface
mainly due to the diffusion of W atoms into Fe atoms
and the longer the simulation time
the more obvious this phenomenon becomes. The radial distribution function (RDF) indicates that the ordering degree on the Fe side is higher than that on the W side. According to the mean square displacement (MSD) curve fitting
the diffusion coefficient and diffusion activation energy were obtained. At temperatures of 1 123~1 323 K
the diffusion activation energies of Fe and W at the Fe/W interface were 1.326 and 0.841 56 eV
respectively. The absolute value of the diffusion potential energy of W atom in Fe crystal is lower
making it easier to break through the energy barrier. The increasing of diffusion temperature and pressure can effectively increase the thickness of the interface diffusion layer. Increasing roughness of the interface to some extent is beneficial for increasing the thickness of the diffusion layer
but it also affects the interface closure. The basic data of diffusion coefficient can provide a theoretical basis for the microstructure control of diffusion bonding interface between low activation steel and tungsten facing the first wall material in actual industrial production.
Fe/W原子扩散分子动力学扩散激活能扩散层厚度
Fe/Watomic diffusionmolecular dynamicsdiffuse activation energythickness of diffusion layer
Yin C,Terentyev D,Zhang T,et al. Ductile to brittle transition temperature of advanced tungsten alloys for nuclear fusion applications deduced by miniaturized three-point bending tests[J]. Int J Refract Metals Hard Mater,2021,95:105464.
Chen J,Liu Y,Liu C. Effects of tantalum on austenitic transformation kinetics of RAFM steel[J]. J. Iron Steel Res. Int,2017,24:705-710.
Widodo W B,Jarir A. Investigation on the diffusion bonding of tungsten and EUROFER97[J]. Journal of Nuclear Materials,2011,417:524-527.
Wang C Y,Li X F,Zhong Z H,et al. Microstructure and mechanical properties of W/steel joints diffusion bonded with Nb and Nb/Ni interlayers by spark plasma sintering[J]. Journal of Adhesion Science and Technology,2020,24:2638-2651.
OONO N,NOH S,IWATA N,et al. Microstructures of brazed and solid-state diffusion bonded joints of tungsten with oxide dispersion strengthened steel[J]. Journal of Nuclear Materials,2011,417(1/3):253-256.
Wei J,Xu C,Li P,et al. Molecular dynamics simulations of the diffusion characteristics on the Fe-W interfaces system[J]. Fusion Engineering and Design,2020,159:111850.
Xiu L,Wu J F. Atomic Diffusion Behavior in W/Cu Diffusion Bonding Process[J].Journal of Fusion Energy,2015,34:769-773.
Chen S D,Soh A K,Ke F J. Molecular dynamics modeling of diffusion bonding[J]. Scripta Materialia,2005,52:1135-1140.
Ma Y, Zhang S,Wang T,et al. Atomic diffusion behavior near the bond interface during the explosive welding process based on molecular dynamics simulations[J].Materials Today Communications,2022,31:103552.
Li Q H,Dong Z B,Ji S D,et al. Effects of Welding Parameter on Atom-Scale Interfacial Diffusion Behavior of Al/Cu Dissimilar Friction Stir Welding[J]. physica status solidi (b),2021,258:2100123.
Yang J W,Zhang J,Qiao J. Molecular Dynamics Simulations of Atomic Diffusion during the Al-Cu Ultrasonic Welding Process[J]. Materials (Basel),2019,12(14):2306.
Bonny G,Castin N,Bullens J,et al. On the mobility of vacancy clusters in reduced activation steels: an atomistic study in the Fe-Cr-W model alloy[J]. Journal of Physics: Condensed Matter,2013,25:315401.
魏君. Fe-W界面扩散特性的分子动力学模拟[D].湖南:湖南大学,2020.
WEI J. Molecular dynamics simulations of the diffusion characteristics on the Fe-W interfaces system[D].Hunan:Hunan University,2020.
袁建东,于爱兵,邹翩,等. 金刚石与钛间原子热压扩散行为的分子动力学模拟[J]. 稀有金属材料与工程,2022,51(01):159-165.
YUAN J D,YU A B,ZOU P,et al. Molecular Dynamics Simulation of Atomic Diffusion Behavior Between Diamond and Titanium During Hot Pressing Process[J]. Rare Metal Materials and Engineering,2022,51(01):159-165.
Wang K,Bai H Y,Hu W B,et al. Investigation of atomic diffusion behavior of Mo/Au interface[J]. Materials Chemistry and Physics,2021,257:123839.
Luo M Z,Liang L,Lang L,et al. Molecular dynamics simulations of the characteristics of Mo/Ti interfaces[J].Computational Materials Science,2018,141:293-301.
Chen S D,Ke F J,Zhou M,et al. Atomistic investigation of the effects of temperature and surface roughness on diffusion bonding between Cu and Al[J]. Acta Materialia,2007,55:3169-3175.
Spišák D,Hafner J. Diffusion of Fe atoms on W surfaces and Fe/W films and along surface steps[J].PHYSICAL REVIEW B,2004,70:195426.
Houze J, Kim S H, Kim S G. The effect of Fe atoms on the adsorption of a W atom on W(100) surface[J].Journal of Applied Physics,2008,103:106103.
相关文章
相关作者
相关机构