新能源汽车铝电池盒MIG焊接新工艺
New MIG Welding Process Technique for Aluminum Alloy of Electric Vehicle Battery Box
- 2024年54卷第6期 页码:94-98
纸质出版日期: 2024-06-25
DOI: 10.7512/j.issn.1001-2303.2024.06.15
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-06-25 ,
移动端阅览
王晓宇,孙全伟,尹斌,等.新能源汽车铝电池盒MIG焊接新工艺[J].电焊机,2024,54(6):94-98.
WANG Xiaoyu, SUN Quanwei, YIN Bin, et al.New MIG Welding Process Technique for Aluminum Alloy of Electric Vehicle Battery Box[J].Electric Welding Machine, 2024, 54(6): 94-98.
在铝合金电池盒实际生产中,由于焊接位置较多、焊接接头板厚差异大,焊接一次合格率很难控制,这就需要研发一种焊接工艺提升铝合金薄厚板焊接的稳定性。目前铝合金电池盒MIG焊接主要是直流脉冲焊接,其中包括直流单脉冲或直流双脉冲焊接。通过分析发现,采用直流+交流摆动同步双脉冲焊接,在相同电流情况下可有效降低焊接热输入,在相同热输入情况下可增加焊缝a值。并在铝合金薄厚板焊接时,可在厚板位置使用直流脉冲,薄板位置使用交流脉冲,保证厚板熔深且薄板不烧穿。摆动同步交直流焊接技术已经在实际生产中得到应用,并有效提高了焊缝合格率和生产效率。
The application of aluminum alloy MIG welding technology in the electric vehicle battery box effectively improves the welding efficiency and reduce the cost of production. In the actual production of aluminum alloy battery box
it is difficult to control the rate of one-pass welding because of the many welding positions and the great difference of the thickness of the welding joint plate
it is necessary to develop a welding process to improve the stability of thin and thick aluminum alloy plate welding. The usual MIG welding method for the electric vehicle battery box is DC pulse welding
the welding mode is DC pulse single-current welding or DC pulse double-current welding. Through analysis
the welding heat input can be effectively lower under the same current condition and the welding a value can be increased under the same heat input condition for DC+AC pulse welding weave method. When the thin plate and thick plate for aluminum alloy welding
DC pulse welding can be used in the position of thick plate and AC pulse welding in the position of thin plate. It can ensure deep penetration of thick plate and non-burn-through of thin plate. AC+DC weave welding technology has been applied in actual production
and has effectively improved the pass rate of welding seam and production efficiencyand improve the welding seam acceptance rate.
铝合金电池盒薄厚板交直流MIG脉冲焊接
aluminum alloy of electric vehicle battery boxthin and thick plateDC+AC MIG pulse welding
李永兵,马运五,楼铭,等. 轻量化多材料汽车车身连接技术进展[J]. 机械工程学报,2016,52(24):1-23.
LI Y B,MA Y W,LOU M,et al. Progress in Lightweight Multi-Material Automotive Body Joining Technology[J]. Journal of Mechanical Engineering, 2016, 52(24): 1-23.
李龙,夏承东,宋友宝,等. 铝合金在新能源汽车工业的应用现状及展望[J]. 轻合金加工技术,2017,45(9):18-25.
LI L,XIA C D,SONG Y B,et al. Application Status and Prospects of Aluminum Alloys in the New Energy Vehicle Industry[J]. Light Alloy Fabrication Technology,2017,45(9):18-25.
伍杰,毛祖莉,任芝兰. 汽车轻量化用铝合金拼焊板的研究进展[J]. 锻压技术,2016,41(9):1-6+12.
WU J,MAO Z L,REN Z L. Research Progress on Aluminum Alloy Tailored Welded Blanks for Automotive Lightweighting[J]. Forging & Stamping Technology,2016,41(9):1-6+12.
周万盛,姚君山. 铝及铝合金的焊接[M]. 北京:机械工业出版社,2006.
熊丹枫,林放,陈小峰,等. 双脉冲MIG焊铝工艺参数设计及试验[J]. 电焊机,2010,40(9):17-21.
XIONG D F, LIN F, CHEN X F, et al. Research and experiment on double pulsed MIG aluminum welding process parameters design[J]. Electric Welding Machine,2010,40(9):17-21.
陈茂爱,武传松,廉荣. GMAW焊接熔滴过渡动态过程的数值分析[J]. 金属学报,2004,40(11):1227-1232.
CHEN M A,WU C S,LIAN R. Numerical Analysis of the Dynamic Process of Material Transfer in GMAW Welding[J]. Acta Metallurgica Sinica,2004,40(11):1227-1232.
赵杰. 材料科学基础(第二版)[M]. 辽宁:大连理工大学出版社,2015.
蒋应田,王海龙,金明远,等. 铝及铝合金焊接方法的概述与选择原则[J]. 电焊机,2015,45(02):115-121.
JIANG Y T,WANG H L,JIN M Y,et al. Overview and Selection Principles of Aluminum and Aluminum Alloy Welding Methods[J]. Electric Welding Machine,2015,45(02):115-121.
刘忠杰,高桥宪人,上山智之,等. 直流-交流双脉冲焊接法的开发[J]. 金属加工:热加工,2010(8):22-24.
LIU Z J,Takahashi K,Kamiyama T,et al.Development of DC/AC dual pulse welding method[J].MW Metal Forming,2010(8):22-24.
曹淑芬,陈铁平,易杰,等. 铝合金双脉冲MIG焊过程的温度及应力变形模拟[J]. 中国有色金属学报,2014,24(7):1685-1692.
CAO S F,CHEN T P,YI J,et al. Simulation of Temperature and Stress Deformation during Aluminum Alloy Double-Pulse MIG Welding Process[J]. The Chinese Journal of Nonferrous Metals,2014,24(7):1685-1692.
相关文章
相关作者
相关机构