基于ABAQUS的单丝双面气电立焊数值模拟
Numerical Simulation Study of Single Wire Double-sided Electro-gas Welding based on ABAQUS
- 2024年54卷第6期 页码:45-52
纸质出版日期: 2024-06-25
DOI: 10.7512/j.issn.1001-2303.2024.06.08
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-06-25 ,
移动端阅览
刘芳芳,傅博,韩严法,等.基于ABAQUS的单丝双面气电立焊数值模拟[J].电焊机,2024,54(6):45-52.
LIU Fangfang, FU Bo, HAN Yanfa, et al.Numerical Simulation Study of Single Wire Double-sided Electro-gas Welding based on ABAQUS[J].Electric Welding Machine, 2024, 54(6): 45-52.
基于有限元软件ABAQUS,建立了单丝双面气电立焊焊接温度场和应力场的有限元模型。热源模型选取圆柱体热源与面热源的组合,并采用生死单元技术来进行焊缝的填充加载,采用试验测定的EH40钢高温热物性参数模拟了焊接过程。模拟计算结果表明:焊后试板的横向残余应力在板中间区域为拉应力,在其余区域为压应力;纵向残余应力在焊缝及其附近区域表现为较大的拉应力,而在远离焊缝的位置拉应力迅速衰减并过渡为压应力;通过与试验结果对比,计算得到的热循环曲线及焊缝形状与实际试验吻合度较高,验证了所建立的模型的准确性。该模型可以用于预测气电立焊焊接过程中的温度场、应力场和残余应力分布,为焊接工艺优化和结构设计提供理论依据。
This study established a finite element model of the welding temperature field and stress field of single wire double-sided electro-gas welding using the finite element software ABAQUS. A combination of cylindrical heat source and surface heat source was selected for the heat source model
and the element birth-death technique was used for weld filling and loading. The high-temperature thermophysical parameters of EH40 steel measured experimentally were used to simulate the welding process. The simulation results show that the transverse residual stress of the welded plate is tensile stress in the middle area and compressive stress in the remaining areas. The longitudinal residual stress appears as a large tensile stress in the weld and its vicinity
while the tensile stress rapidly attenuates and transitions to compressive stress at locations far away from the weld. Comparison with experimental results reveals a high degree of agreement between the simulated thermal cycle curves and weld shapes and those obtained from actual tests
validating the accuracy of the established model. This model can be used to predict the temperature field
stress field
and residual stress distribution during the electro-gas welding process of single wire double-sided
providing a theoretical basis for welding process optimization and structural design.
单丝双面气电立焊热源模型热循环曲线数值模拟残余应力
single wire double-sided electro-gas weldingheat source modelthermal cycle curvenumerical simulationresidual stress
李景波,王刚,沙玉章,等. 船体厚板高效气电立焊焊接技术的研究[J]. 电焊机,2004,34(02):14-44.
LI J B,WANG G,SHA Y Z,et al. Study of technology and equipment of electrogas welding of high efficiency in thick plate of ship[J]. Electric Welding Machine, 2004, 34(02):14-44.
许小平. 船舶气电立焊工艺与参数控制[J]. 电焊机, 2010, 40(01): 83-85.
XU X P. Controlling of technology and parameter in electro-gas welding in shipbuilding[J]. Electric Welding Machine,2010,40(01):83-85.
Chen Y,Fang C F,Yang Z D,et al. Arc properties and droplet transfer characteristics in cable-type welding wire electrogas welding[J]. Journal of Manufacturing Processes,2018,32:506-512.
赵飞,张钊,姜飞,等. 气电立焊自动系统设计及其控制研究[J]. 焊接技术,2019,48(01):76-79.
ZHAO F,ZHANG Z,JIANG F,et al. Design and Control Research of Gas Electric Vertical Welding Automatic System[J]. Welding Technology,2019,48(01):76-79.
梁国俐. 垂直气电立焊EH36船板钢接头力学性能分析[J]. 热加工工艺,2016,45(01):215-216+220.
LIANG G L. Mechanical Property Analysis of EH36 Ship Plate Steel Vertical Gas Electric Vertical Welded Joint[J]. Hot Working Technology,2016,45(01):215-216+220.
Shen Y,Leng J,Wang C. On the heterogeneous microstructure development in the welded joint of 12MnNiVR pressure vessel steel subjected to high heat input electrogas welding[J]. Journal of Materials Science & Technology,2019,35(8):235-240.
Seo K,Ryoo H,Kim H J,et al. Characterization of the local brittle layer formed in electro-gas weld metals[J]. Welding in the World,2020,65(10):1-12.
Seo K,Ryoo H,Kim H J,et al. Local variation of impact toughness in tandem electro-gas welded joint[J]. Welding in the World,2020,64(3):457-465.
魏雷,魏淳. Q460钢T型接头单边开坡口非对称焊接的数值模拟[J]. 热加工工艺,2019,48(07):244-246.
WEI L,WEI C. Numerical Simulation of Unsymmetrical Welding of Q460 Steel T-joint with Single Edge Bevel[J]. Hot Working Technology, 2019, 48(07): 244-246.
葛可可,陈凤林,侯春明,等. 钛合金厚板窄间隙焊接残余应力模拟研究[J]. 热加工工艺, 2020, 49(13): 132-135.
GE K K,CHEN F L,HOU C M,et al. Simulation Study on Residual Stress of Narrow Gap Welding for Titanium Alloy Thick Plate[J]. Hot Working Technology, 2020, 49(13): 132-135.
金阳,王少刚,黄炜,等. 新型铝锂合金激光焊接数值模拟分析及其试验验证[J]. 热加工工艺, 2019, 48(21): 163-169.
JIN Y,WANG S G,HUANG W,et al. Numerical Simulation Analysis and Experimental Verification of Laser Welding of a New Type of Aluminum-lithium Alloy [J]. Hot Working Technology,2019,48(21):163-169.
洪小龙,黄本生,李天宁,等. 几种常见焊接工艺热源模型的研究进展[J]. 材料热处理学报,2023,44(05):25-38.
HONG X L,HUANG B S,LI T Y,et al. Research Progress on Heat Source Models of Several Common Welding Processes[J]. Journal of Materials Heating Treatment,2023,44(05):25-38.
Unni A K,Muthukumaran V. Modeling of heat transfer,fluid flow,and weld pool dynamics during keyhole laser welding of 316 LN stainless steel using hybrid conical-cylindrical heat source[J]. The International Journal of Advanced Manufacturing Technology,2022,122:3623-3645.
陈丽,苏建榕,陈锴,等. 基于MSC.Marc的平板对接接头残余应力分布规律及影响因素[J]. 热加工工艺,2021,50(23):135-138+145.
CHEN L,SU J R,CHEN K,et al. Distribution Law and Influencing Factors of Residual Stress in Plate Butt Joint Based on MSC.Marc[J]. Hot Working Technology,2021,50(23):135-138+145.
赵伟,张晨,胡敏东,等. 45/Mn13异种钢焊接温度场模拟与Mn13钢侧焊接热影响区微观组织调控[J]. 南京工程学院学报(自然科学版),2022,20(04):61-67.
ZHAO W,ZHANG C,HU M D,et al. Welding Temperature Field Simulation of 45/Mn13 Dissimilar Steel and Microstructure Control of Mn13 Steel Side Weld Heat Affected Zone[J]. Journal of Nanjing Institute of Technology (Natural Science Edition),2022,20(04):61-67.
方洪渊. 焊接结构学(第2版)[M]. 北京:机械工业出版社,2019.
相关作者
相关机构