时效处理对Fe-Ni基奥氏体合金耐点蚀性能的影响
Effect of Aging Treatment on Pitting Corrosion Resistance of Fe-Ni Based Austenitic Alloy
- 2024年54卷第3期 页码:18-23
纸质出版日期: 2024-03-25
DOI: 10.7512/j.issn.1001-2303.2024.03.03
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2024-03-25 ,
扫 描 看 全 文
郑军宝,闫英杰,曹睿.时效处理对Fe-Ni基奥氏体合金耐点蚀性能的影响[J].电焊机,2024,54(3):18-23.
ZHENG Junbao, YAN Yingjie, CAO Rui.Effect of Aging Treatment on Pitting Corrosion Resistance of Fe-Ni Based Austenitic Alloy[J].Electric Welding Machine, 2024, 54(3): 18-23.
针对Fe-Ni基奥氏体合金在740 ℃时效处理后的析出相随时效时间的演变进行探究;并通过电化学腐蚀试验以及Mott-Schottky分析,研究了时效处理对合金耐腐蚀性能的影响。结果表明:740 ℃时效处理可以促进γ′沉淀强化相[Ni
3
(Al,Ti)]在合金中的析出;随时效时间的增加,γ′析出相的密度和尺寸增加;同时,时效处理会增加合金表面点缺陷数量,降低合金钝化膜致密性,从而导致合金耐点蚀性降低;通过恒电位阳极极化处理能够有效降低合金表面点缺陷数量,提高合金耐点蚀性。
The evolution of precipitated phase of Fe-Ni based austenite alloy after aging at 740 ℃ with aging time was investigated. The effect of aging treatment on corrosion resistance of the alloy was studied by electrochemical corrosion test and Mott-Schottky analysis. The results show that aging treatment at 740 ℃ can promote the precipitation of γ′ phase [Ni
3
(Al
Ti)] in the alloy. The density and size of γ′ precipitated phase increase with aging time. At the same time
aging treatment can increase the number of spot defects on the alloy surface
reduce the density of the alloy passivation film
and lead to the decrease of the pitting resistance of the alloy. Constant potential anodic polarization treatment can effectively reduce the number of point defects on the alloy surface and enhance the alloy’s resistance to pitting corrosion. The self-corrosion current density of the alloy before aging is -6.697 7 A/cm
2
while after aging for 4 hours and 8 hours
it is -5.716 4 A/cm
2
and -6.081 2 A/cm
2
respectively
both higher than before aging. After electrochemical surface modification
the self-corrosion current density of the alloy before aging is -7.490 125 A/cm
2
and after aging for 4 hours and 8 hours
it is -6.127 403 A/cm
2
and -6.486 164 A/cm
2
respectively
still lower than before aging.
Fe-Ni基奥氏体合金时效处理γ′析出相耐点蚀性能表面改性
Fe-Ni based austenitic alloyaging treatmentγ′ precipitated phasepitting resistancesurface modified technique
ALANO J H, SIQUEIRA R L, DE OLIVEIRA A D, et al. Effect of TCP phase formation on the electrochemical corrosion behavior of the nickel-based superalloy UNS N26455[J]. Corrosion Science, 2020, 177.
KOBAYASHI K, YAMAGUCHI K, HAYAKAWA M, et al. High-temperature fatigue properties of austenitic superalloys 718, A286 and 304L[J]. International Journal of Fatigue, 2008, 30(10-11): 1978-1984.
WU H,OSHIDA Y,HAMADA S,et al. Fatigue strength properties of precipitation strengthening stainless steel A286 focused attention on small fatigue crack behaviour[J]. Procedia Engineering,2011,10: 1973-1978.
GUO Z, LIANG H, ZHAO M, et al. Effect of boron addition on hydrogen embrittlement sensitivity in Fe-Ni based alloys[J]. Materials Science and Engineering: A,2010, 527(24-25): 6620-6625.
ZHAO J C, RAVIKUMAR V, BELTRAN A M. Phase precipitation and phase stability in nimonic 263[J].Metallurgical and Materials Transactions A, 2001, 32(6): 1271-1282.
DE CICCO H, LUPPO M I, GRIBAUDO L M, et al. Microstructural development and creep behavior in A286 superalloy[J]. Materials Characterization, 2004, 52(2): 85-92.
BROOKS J A, THOMPSON A W. Microstructure and Hydrogen Effects on Fracture in sthe Alloy A-286 [J]. Metallurgical and Materials Transactions A, 1993, 24(9): 1983-1991.
ZHAO M J, GUO Z F, LIANG H, et al. Effect of boron on the microstructure, mechanical properties and hydrogen performance in a modified A286[J]. Materials Science and Engineering: A, 2010, 527(21-22): 5844-5851.
RHO B S, NAM S W, XIE X. The effect of test temperature on the intergranular cracking of Nb-A286 alloy in low cycle fatigue[J]. Journal of Materials Science, 2002, 37(1): 203-209.
SINGHAL L K, Martin J W. The mechanism of tensile yield in an age-hardened steel containing γ′ (ordered Ni3Ti) precipitates[J]. Acta Metallurgica, 1968, 16(7):947-953.
崔巍,高磊,王东丽,等.钛换热管与管板焊接接头电化学腐蚀性能研究[J].电焊机,2020,50(08):124-128.
CUI W, GAO L, WANG D L, et al. Study on electrochemical corrosion test of welding joint between TA2 heat exchange tube and TA2 tube sheet[J]. Electric Welding Machine, 2020,50(8):124-128.
姜心怡,严春妍,周倩雯,等. X80管线钢激光-MIG复合焊焊缝耐腐蚀性分析[J]. 电焊机: 2022,52(04):51-57.
JIANG X Y, YAN C Y, ZHOU Q W, et al. Corrosion Resistance Analysis of Hybrid Laser-MIG Welded Metal of X80 Pipeline Steel[J]. Electric Welding Machine, 2022, 52(4): 51-57.
BELO M D C, HAKIKI N, FERREIRA M J E A. Semiconducting properties of passive films formed on nickel–base alloys type Alloy 600: influence of the alloying elements[J]. 1999, 44(14): 2473-81.
BOCKRIS J O M, KHAN S U, KHAN S U. Surface Electrochemistry: A Molecular Level Approache[M]. Springer Science & Business Media, 1993.
STIMMING U, SCHULTZE J J E A. A semiconductor model of the passive layer on iron electrodes and its application to electrochemical reactions[J].Electrochimica Acta, 1979, 24(8): 859-69.
SUN F, MENG G, ZHANG T, et al. Electrochemical corrosion behavior of nickel coating with high density nano-scale twins (NT) in solution with Cl-[J]. Electrochimica Acta, 2009, 54(5): 1578-83.
MORRISON S R, MORRISON S. Electrochemistry at semiconductor and oxidized metal electrodes[M]. Springer, 1980.
WANG C, ZHU P, WANG F, et al. Anisotropy of microstructure and corrosion resistance of 316L stainless steel fabricated by wire and arc additive manufacturing [J]. Corrosion Science, 2022, 206: 110549.
MACDONALD D D. The Passive State in Our Reactive Metals-Based Civilization[J]. Arabian Journal for Science and Engineering, 2012, 37(5): 1143-85.
林玉华,杜荣归,胡融刚,等. 不锈钢钝化膜耐蚀性与半导体特性的关联研究[J]. 物理化学学报, 2005(07): 740-745.
LIN Y H,DU R G,HU R G,et al. A Correlation Study of Corrosion Resistance and Semiconductor Properties for the Electrochemically Modified Passive Film of Stainless Steel[J]. Acta Physico-Chimica Sinica, 2005(07):740-745.
相关作者
相关机构