面向9%Ni钢大型储罐的旋转电弧窄间隙立焊装备
Rotating Arc Narrow Gap Vertical Welding Equipment for 9% Ni Steel Large Storage Tanks
- 2024年54卷第3期 页码:1-11
纸质出版日期: 2024-03-25
DOI: 10.7512/j.issn.1001-2303.2024.03.01
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2024-03-25 ,
扫 描 看 全 文
闫强强,贾传宝,陈崇龙,等.面向9%Ni钢大型储罐的旋转电弧窄间隙立焊装备[J].电焊机,2024,54(3):1-11.
YAN Qiangqiang, JIA Chuanbao, CHEN Chonglong, et al.Rotating Arc Narrow Gap Vertical Welding Equipment for 9% Ni Steel Large Storage Tanks[J].Electric Welding Machine, 2024, 54(3): 1-11.
提出一种面向9%钢大型LNG储罐的旋转电弧窄间隙立焊装备,旨在解决LNG储罐立缝位置的焊接难题。采用窄间隙TIG旋转电弧焊接新工艺,将钨极打磨成非轴对称的尖端,通过电机控制钨极旋转,使电弧周期性加热窄间隙坡口两侧,有效解决了侧壁熔合问题。为配合该工艺,设计了新型窄间隙TIG旋转电弧焊枪,具备无线回转导电、自动送丝和双路气保护功能。同时,提出了一套适用于LNG储罐立缝位置的自动焊接设备,包括真空吸附的挂壁小车和焊接小车。在实验室搭建了全套试验装备,包括焊接小车、全自动送丝机、焊接电源等,控制焊枪立缝位置的焊接行走,防止9%Ni钢磁化,同时保证焊接过程的稳定。对24 mm厚9%Ni钢进行单层单道的焊接试验和窄间隙坡口对接试验,验证了新工艺能够解决厚板窄间隙焊接中侧壁熔合的问题,并且由于电弧循环旋转,对熔池具有搅拌作用,焊缝表面成形平滑美观。该研究为LNG储罐立缝的自动高效焊接提供了技术和装备支持。
A rotary arc narrow gap vertical welding equipment for 9% steel large-scale LNG storage tanks is proposed
aiming to solve the welding problems in the position of the vertical seam of LNG storage tanks. The new narrow gap TIG rotary arc welding process is adopted
in which the tungsten electrode is polished into a non-axisymmetric tip
and the tungsten electrode is rotated by motor control
so that the arc heats up both sides of the narrow-gap bevel periodically
which effectively solves the problem of fusion of the side walls. In order to cooperate with this process
a new type of narrow-gap TIG rotary arc welding torch is designed with wireless rotary conductivity
automatic wire feeding and dual path gas protection. At the same time
a set of automatic welding equipment suitable for the position of the vertical seam of LNG storage tanks is proposed
including a wall-mounted trolley and a welding trolley with vacuum adsorption. A full set of test equipment
including welding trolley
fully automatic wire feeder and welding power supply
was built in the laboratory to control the welding travel of the welding torch in the vertical seam position to prevent magnetization of 9%Ni steel
and at the same time to ensure the stability of the welding process. The welding test of 24 mm thick 9%Ni steel with a single layer and a single pass and the narrow gap bevel butt joint test verified that the new process can solve the problem of sidewall fusion in the narrow gap welding of thick plates. And due to the arc cycle rotation
the molten pool has a stirring effect
so that the weld surface shaping is also very smooth and beautiful. This study provides technical and equipment support for automatic and efficient welding of LNG tank vertical seam.
窄间隙旋转电弧侧壁熔合9%Ni钢立焊自动化焊接
narrow gaprotating arcSide wall fusion9%Ni steelvertical weldingautomated welding
李连波,鲁欣豫,任胜汉,等. 9%Ni钢全自动TT立焊焊接工艺开发[J].电焊机,2017,47(10):116-118.
LI L B, LU X Y, Ren S H, et al. Development of fully automatic TT vertical welding welding process for 9% Ni Steel[J]. Electric Welding Machine, 2017, 47(10):116-118.
林文虎,华学明,蔡艳,等.9Ni钢焊接工艺适应性研究[J]. 焊接技术,2016,45(3):43-47.
LIN W H, HUA X M, CAI Y, et al. Study on welding qualifications of 9% nickel steel[J]. Welding Technology,2016,45(3):43-47.
Hur S, Kim Y, Park J, et al. Application of Super-TIG Welding for Productivity Improvement of 9% Ni Steel Welding[C]// The Korean Welding & Joining Society, 2017.
汪忠,肖劲兵,扈晓刚,等. 核电站几个关键部件的智能制造焊接解决方案[J].电焊机,2019,49(04):15-25.
WANG Z, XIAO J B, HU X G , et al . Intelligent manufacturing welding solutions for several key components of nuclear power plants[J]. Electric Welding Machine, 2019, 49(04): 15-25.
郑倩倩,郑日水,罗超,等. 核电站VVER堆型复合钢主管道窄间隙钨极氩弧(N-TIG)自动焊技术应用可行性研究[J]. 电焊机, 2019, 49(04): 59-66.
ZHENG Q Q, ZHENG R ,S, LUO C, et al. Feasibility study on application of narrow gap argon arc (N-TIG) welding technology in nuclear power plant VVER composite steel main pipeline[J]. Electric Welding Machine, 2019, 49(04): 59-66.
王海东,任伟,裴月梅,等. 压水堆核电站主回路管道窄间隙自动焊工艺研究[J].电焊机,2010,40(8):21-27.
WANG H D, REN W ,PEI Y M, et al. Research on narrow-gap GTA welding of PWR nuclear power plant primary piping[J]. Electric Welding Machine, 2010, 40(8): 21-27.
山珊,唐新华,余刚. 窄间隙TIG焊枪的研制[J]. 热加工工艺, 2011, 40(23): 182-184.
SHAN S, TANG X H, YU G. Research on Design of Narrow Gap TIG Welding Torch[J]. Hot Working Technology, 2011, 40(23): 182-184.
余刚. 窄间隙TIG焊枪设计研究[D]. 上海: 上海交通大学, 2011.
YU G. Study of Narrow Gap TIG Torch Design[D]. Shanghai: Shanghai Jiao Tong University, 2011.
Kobayashi K, Nishimura Y, Iijima T, et al. Practical Application of High Efficiency Twin-Arc TIG Welding Method (Sedar-TIG) for Pclng Storage Tank[J]. Welding in the World, 2013, 48(7-8):35-39.
Yoshiaki M, Hidetoshi F, Fuminori I, et al. Development of high frequency tungsten inert gas welding method[J]. Materials & Design,2013,44:12-16,.
Kobayashi K, Yamada M, Fujishima K, et al. Development of high efficiency twin-arc TIG welding method[C]// IIW Doc. 12,2004:1669-1701.
张仁军. 旋转陶瓷片约束TIG电弧超窄间隙焊接技术研究[D]. 甘肃: 兰州理工大学, 2007.
ZHANG R J. Research on TIG arc ultra narrow gap welding technology constrained by rotating ceramic sheets[D]. Gansu: Lanzhou University of Technology, 2007.
吴启东. 窄间隙钨极焊接电弧的磁场控制[J]. 焊接学报, 1983(4): 15-20+51-52.
WU Q D.The Magnetic Control of TIG Arc in Narrow Gap Welding[J]. Transactions of the China Welding Institution, 1983(4): 15-20+51-52.
Sun Q J, Wang J F, Feng J C, et al. Optimization of magnetic arc oscillation system by using double magnetic pole to TIG narrow gap welding[J]. International Journal of Advanced Manufacturing Technology,2016,86(1-4):761-767.
贾传宝,杜永鹏,武传松,等. 厚板窄间隙磁控电弧TIG焊接自动控制系统设计[J]. 华南理工大学学报 (自然科学版), 2017(9): 40-46.
JIA C B, DU Y P, WU C S, et al. Design of an Automatic Control System for Magnetic Controlled Narrow-Gap TIG Arc Welding of Thick Plates[J]. Journal of South China University of Technology(Natural Science Edition), 2017(9): 40-46.
Wang J F, Sun Q J, Feng J C, et al. Characteristics of welding and arc pressure in TIG narrow gap welding using novel magnetic arc oscillation[J]. International Journal of Advanced Manufacturing Technology,2017,90:413-420.
胡海峰. 磁控电弧窄间隙TIG焊接设备及工艺研究[D]. 黑龙江: 哈尔滨工业大学, 2012.
Wang J Y, Huang P, Zhu J, et al. Visualization and Analysis of Groove Residual Magnetism for Narrow Gap Arc Welding[J]. Isij International, 2018,58(1): 146-152.
永岛利治. 日立窄间隙焊接设备在重容重机行业的应用[C]//2010中国焊接产业论坛, 2010.
冯东旭,谷文,艾丹凤,等. 核电用508-Ⅲ钢窄间隙脉冲TIG单层单道钨极摆动焊工艺[J].焊接学报,2016,37(6): 99-102.
FENG D X, GU W, AI D F, et al. Narrow gap pulse TIG single-pass one layer welding technology of 508-Ⅲ steel for nuclear power equipment[J]. Transactions of The China Welding Institution,2016,37(6):99-102.
Zhang G, Shi Y, Zhu M, et al. Arc characteristics and metal transfer behavior in narrow gap gas metal arc welding process[J]. Journal of Materials Processing Technology, 2017, 245:15-23.
顾玉芬,何冠宇,石玗,等. 窄间隙约束下熔化极气体保护焊的电弧形态和熔滴过渡分析[J]. 上海交通大学学报,2016,50(10):1526-1529+1534.
GU Y F,HE G Y,SHI Y, et al. Detection and Analysis of Arc Shape and Droplet Transfer Behavior of Narrow Gap GMAW[J]. Journal of Shanghai Jiaotong University,2016,50(10):1526-1529+1534.
Häßler M,Rose S,Füssel U,et al. TIG narrow gap welding — new approaches to evaluate and improve the shielding gas coverage and the energy input[J]. Welding in the World, 2015, 59(1):71-76.
Cai X, Fan C, Lin S, et al. Effects of shielding gas composition on arc behaviors and weld formation in narrow gap tandem GMAW[J]. International Journal ofAdvanced Manufacturing Technology, 2017, 91(9-12):3449-3456.
相关作者
相关机构