超大线能量焊接用EH36厚钢板的开发及其焊接试验
Development of EH36 Thick Plate for Large Heat-input Welding and its Welding Properties
- 2024年54卷第2期 页码:37-43
DOI: 10.7512/j.issn.1001-2303.2024.02.06
扫 描 看 全 文
扫 描 看 全 文
曲之国,王东明,赵和明,等.超大线能量焊接用EH36厚钢板的开发及其焊接试验[J].电焊机,2024,54(2):37-43.
QU Zhiguo, WANG Dongming, ZHAO Heming, et al.Development of EH36 Thick Plate for Large Heat-input Welding and its Welding Properties[J].Electric Welding Machine, 2024, 54(2): 37-43.
在大型建筑、桥梁、造船、重型机械等领域,经常需要焊接厚钢板,使用常规的焊接方法可能会遇到焊接效率低下、焊接质量不稳定等问题。开发了一种大线能量焊接用的EH36钢板(厚80 mm),并采用线能量532 kJ/cm的双丝气电立焊进行超大线能量焊接试验。结果表明,经过大线能量焊接热循环后,粗晶热影响区不可避免地出现了粗化问题,原奥氏体平均晶粒尺寸为312 μm,通过均匀分布的复合氧化物夹杂诱导,晶内可形成针状铁素体为主+少量侧板条铁素体的组织类型,使粗晶区能够获得较理想的韧性水平。其中,在-20 ℃条件下,钢板厚度中心熔合线冲击功为70~269 J,均值为179 J;在-40 ℃条件下,钢板厚度中心熔合线冲击功为50~216 J,均值为115 J。焊接接头各位置冲击性能良好,满足EH36钢板对焊接接头冲击性能的要求。
In the fields of large-scale construction
bridges
shipbuilding
and heavy machinery
welding of thick steel plates is often required
and problems such as low welding efficiency and unstable welding quality may be encountered using conventional welding methods. An EH36 steel plate (80 mm thick) for large wire energy welding was developed
and a large wire energy welding test was carried out by using dual-wire gas-electric riser welding with 532 kJ/cm heat-input. The results show that after the large wire energy welding thermal cycle
the coarse grain heat-affected zone is inevitably coarsened
the average grain size of the original austenite is 312 μm
and through the uniform distribution of the composite oxide inclusions induced
the intracrystalline can be formed into the organization type of acicular ferrite dominated + a small amount of lateral lath ferrite
so that the coarse grain zone can obtain a more desirable level of toughness. Among them
under the condition of -20 ℃
the fusion line impact work of steel plate thickness center is 70~269 J
with an average value of 179 J; under the condition of -40 ℃
the fusion line impact work of steel plate thickness center is 50~216 J
with an average value of 115 J. The impact performance of welded joints is good in all positions
which meets the requirements of impact performance of welded joints of EH36 steel plate.
大线能量焊接EH36钢板双丝气电立焊冲击功氧化物夹杂
large heat-input weldingEH36 steeldouble wire gas electric vertical weldingimpact energyoxide inclusion
赵捷. 我国高品质船舶、海洋工程用钢研究进展[J]. 材料导报, 2018, 32(31): 428-431.
ZHAO J. Progress on High Quality Ship Steel and Marine Engineering Steel in China[J]. Materials Reports, 2018, 32(31): 428-431.
曲占元. 埋弧焊线能量对船用EH36钢板焊缝低温冲击韧性的影响[J]. 材料开发与应用,2010(7): 7-9.
QU Z Y. Influence of Heat Input on Low Temperature Toughness of Submerged Arc Welding Seam on Marine E36 Steel[J]. Development and Application of Materials, 2010(7): 7-9.
杨才福,柴锋,苏航. 大线能量焊接船体钢的研究[J]. 上海金属, 2010,32(1):1-10.
YANG C F, CAI F, SU H. Study of Ship Hull Steel for High Heat Input Welding[J]. Shanghai Metals, 2010, 32(1): 1-10.
付魁军,及玉梅,王佳骥,等. 大线能量焊接用船体结构钢的研究进展[J]. 鞍钢技术, 2011(6): 7-12.
FU K J, JI Y M, WANG J J, et al. Research Progress on Hull Structural Steels by High Heat Input Welding[J]. Angang Technology, 2011(6): 7-12.
Kojima A, Yoshii K, Hada T, et al. Development of High Haz Toughness Steel Plates for Box Columns With High Heat Input Welding[J]. Nippon Steel Technical Report, 2004, 90(7): 39.
Sasaki K, Motomatsu R, Suda K,et al. Development of Two-Electrode Electro Gas Arc Welding Process[J].Nippon Steel Technical Report , 2004, 90(7): 67.
Zhu K, Yang J, Wang R Z, et al. Effect of Mg addition on inhibiting austenite grain growth in heat affected zones of Ti bearing low carbon steels. J Iron Steel Res Int., 2011, 18(9): 60.
李文晓, 郭慧英, 陈刚, 等. 大线能量焊接EH36船板钢FCB焊接接头组织与性能[J]. 电焊机, 2017, 47(8): 1-8.
LI W X, GUI H Y, CHEN G, et al. Microstructure and properties of FCB weld joint of shipbuilding steel EH36 for high heat input welding[J]. Electric Welding Machine, 2017, 47(8): 1-8.
刘洪波,李建新,吝章国,等. 大线能量焊接用EH420海工钢生产工艺及焊接性能[J]. 工程科学学报, 2020, 42(11): 1473-1480.
LIU H B, LI J X, LI Z G, et al. Production technology and welding properties of high heat input welding EH420 offshore steel[J]. Chinese Journal of Engineering, 2020, 42(11): 1473-1480.
杨宇龙,贾潇,朱伏先,等. 大线能量焊接用钢粗晶热影响区针状铁素体形成过程控制技术的研究进展[J]. 材料导报, 2022, 36(5): 145-155.
YANG Y L, JIA X, ZHU F X, et al. Research Progeress on Control Technology of Acicular Ferrite in CGHAZ for Large Heat-input Welding Steels[J]. Materials Reports, 2022, 36(5): 145-155.
Kikuchi N, Nabeshima S, Yamashita T, et al. Micro-structure refinement in low carbnon high manganes steels through Ti-deoxidation, characterization and effect of secondary deoxidation particles[J]. ISIJ International ,2011,51(12):2019.
杨健,蔡文菁. 镁处理对钢中夹杂物以及HAZ组织和性能的影响[J]. 钢铁, 2021,56(7):13-24.
YANG J, CAI W J. Effect of magnesium treatment on inclusions and HAZ microstructure and properties of steel plate[J]. Iron and Steel, 2021,56(7):13-24.
刘岩, 王凯, 王建明, 等. 大线能量焊接条件下低合金高强度钢针状铁素体形核影响因素及形核机理研究[J]. 材料导报, 2016, 30(13): 102-105,118.
LIU Y, WANG K, WANG J M, et al. Acicular Ferrite Nucleation in High Strength Low Alloys Steel During High Heat Input Welding:Influences and Mechanism[J]. Materials Reports, 2016, 30(13): 102-105,118.
邹宗园, 韩舒婷, 李银潇, 等. 大线能量焊接用钢CGHAZ冲击韧性内在机理分析[J]. 中国冶金,2019,29(1): 18-24.
ZOU Z Y, HAN S T, LI Y X, et al. Analysis of internal mechanism of impact toughness of CGHAZ for high heat input welding steels[J]. China Metallurgy, 2019, 29(1): 18-24.
编辑部网址:http://www.71dhj.comhttp://www.71dhj.com
相关作者
相关机构