核反应堆压力容器低合金钢与奥氏体不锈钢异种金属焊接研究现状
Nuclear Reactor Pressure Vessel Low-alloy Steel and Austenitic Stainless Steel Dissimilar Metal Welding Research Status
- 2023年53卷第12期 页码:7-21
DOI: 10.7512/j.issn.1001-2303.2023.12.02
扫 描 看 全 文
扫 描 看 全 文
何大明,黄祖来,周利,等.核反应堆压力容器低合金钢与奥氏体不锈钢异种金属焊接研究现状[J].电焊机,2023,53(12):7-21.
HE Daming, HUANG Zulai, ZHOU Li, et al.Nuclear Reactor Pressure Vessel Low-alloy Steel and Austenitic Stainless Steel Dissimilar Metal Welding Research Status[J].Electric Welding Machine, 2023, 53(12): 7-21.
核电反应堆压力容器是核电站的核心设备之一,其安全性和可靠性对核电站的运行至关重要。在压力容器的制造中,涉及到低合金钢与奥氏体不锈钢的异种金属焊接。针对该异种金属焊接接头存在的组织不均匀性、元素扩散、应力腐蚀裂纹等问题,从焊接填充材料的选择和优化、可能应用的焊接方法、焊后热处理及工艺控制等方向探讨了解决措施与发展方向。为提高此类接头质量和可靠性的研究提供参考,从而确保核电站的安全运行。
The nuclear power reactor pressure vessel (RPV) is one of the core equipments in a nuclear power plant (NPP), and its safety and reliability are vital to the operation of the plant. The fabrication of RPV involves the dissimilar metal welding of low-alloy steel to austenitic stainless steel. This paper discusses the problems of organizational inhomogeneity, elemental diffusion, and stress corrosion cracking that exist in this welding. From the selection and optimization of welding filler materials, as well as the possible application of welding methods, post-weld heat treatment, process control, and other directions to discuss possible solutions to welding problems and development directions. To provide a reference for future research to improve the quality and reliability of such joints, thus ensuring the safe operation of NPPs.
反应堆压力容器异种金属焊接接头质量研究现状
reactor pressure vesseldissimilar metals weldingjoint qualityresearch status
李毅丰. 压水堆安全端异种金属焊接接头镍基焊缝材料应力腐蚀开裂敏感性研究[D]. 安徽:中国科学技术大学, 2018.
LI Y F. Study of Stress Corrosion Cracking Susceptibility of Nickel-based Welds in Safe-end Dissimilar MetalWeld in Pressurized Water Reactor[D]. Anhui:University of Science and Technology of China, 2018.
Ru X, Staehle R W. Historical experience providing bases for predicting corrosion and stress corrosion in emerging supercritical water nuclear technology: Part 1—review[J]. CORROSION, 2013, 69(3): 211-229.
Lim Y S, Kim H P, Cho H D, et al. Microscopic examination of an Alloy 600/182 weld[J]. Materials Characterization, 2009, 60(12): 1496-1506.
Srinivasana P B, Kumar M P S. Microstructural and electrochemical characterization of a thin-section dissimilar stainless steel weld joint[J]. Materials Chemistry and Physics, 2009, 115(1): 179-184.
Sireesha M,Albert S K,Shankar V,et al. A comparative evaluation of welding consumables for dissimilar welds between 316LN austenitic stainless steel and Alloy 800[J].Journal of Nuclear Materials,2000,279(1):65-76.
Das C R, Bhaduri A K, Srinivasan G, et al. Selection of filler wire for and effect of auto tempering on the mechanical properties of dissimilar metal joint between 403 and 304L(N) stainless steels[J]. Journal of Materials Processing Technology, 2009, 209(3): 1428-1435.
Naffakh H, Shamanian M, Ashrafizadeh F. Weldability in dissimilar welds between Type 310 austenitic stainless steel and Alloy 657[J]. Journal of Materials Science, 2008, 43(15): 5300-5304.
Dehmolaei R, Shamanian M, Kermanpur A. Effect of solution annealing on weldability of aged alloy 800/25Cr-35Ni steel dissimilar welds[J]. Science and Technology of Welding and Joining,2008,13(6):515-523.
Ming H, Zhang Z, Wang J, et al. Microstructural characterization of an SA508-309L/308L-316L domestic dissimilar metal welded safe-end joint[J]. Materials Characterization, 2014, 97: 101-115.
李刚. 核电异种金属激光填丝焊接头组织与性能及热裂纹形成机理[D]. 上海:上海交通大学, 2015.
LI G.Structure and Properties of Laser Wire Filling Welding Joint for Nuclear Power Heterogeneous Metals and Mechanism of Hot Crack Formation[D].Shanghai:Shanghai Jiao Tong University,2015.
Nivas R, Singh P K, Das G, et al. A comparative study on microstructure and mechanical properties near interface for dissimilar materials during conventional V-groove and narrow gap welding[J].Journal of Manufacturing Processes, 2017, 25: 274-283.
王海涛. 核电安全端异种金属焊接接头的局部力学性能及断裂行为[D]. 上海:华东理工大学, 2013.
WANG H T. Local mechanical properties and fracture behavior of dissimilar metal welded joints at the safety end of nuclear power plants[D].Shanghai:East China University of Science and Technology,2013.
Ghosh M, Santosh R, Das S K, et al. Effect of structural heterogeneity on in situ deformation of dissimilar weld between ferritic and austenitic steel[J]. Metallurgical and Materials Transactions A, 2015, 46(8): 3555-3568.
高殿宝, 李志杰. 核反应堆压力容器安全端焊接方法[J]. 一重技术, 2011(06): 36-38.
GAO D B,LI Z J.RPV Safety End Welding Procedure[J]. CFHI Technology,2011(06):36-38.
Ming H, Wang J, Han E H. Comparative study of microstructure and properties of low-alloy-steel/nickel-based-alloy interfaces in dissimilar metal weld joints prepared by different GTAW methods[J]. Materials Characterization, 2018, 139: 186-196.
Wang H T,Wang G Z,Xuan F Z,et al. Fracture mechanism of a dissimilar metal welded joint in nuclear power plant[J]. Engineering Failure Analysis, 2013, 28: 134-148.
Wang H T, Wang G Z, Xuan F Z, et al. Local mechanical properties of a dissimilar metal welded joint in nuclear power systems[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2013, 568: 108-117.
吴叶军, 孙尧尧, 马国新. S904L超级奥氏体不锈钢管钨极氩弧焊接头的力学性能与耐腐蚀性能[J]. 机械工程材料, 2019, 43(11): 37-41.
WU Y J,SUN Y Y,MA G X. Mechanical Properties and Corrosion Resistance of GTAW Joint of S904L Super Austenitic Stainless Steel Tube[J]. Materials for Mechanical Engineering,2019,43(11):37-41.
Joseph A, Rai S K, Jayakumar T, et al. Evaluation of residual stresses in dissimilar weld joints[J]. International Journal of Pressure Vessels and Piping, 2005, 82(9): 700-705.
Naffakh H, Shamanian M, Ashrafizadeh F. Dissimilar welding of AISI 310 austenitic stainless steel to nickel-based alloy Inconel 657[J]. Journal of Materials Processing Technology, 2009, 209(7): 3628-3639.
明洪亮,张志明,王俭秋,等.国产核电安全端异种金属焊接件的微观结构及局部性能研究[J].金属学报, 2017,53(01):57-69.
MING H L,ZHANG Z M,WANG J Q,et al.Microstructure and Local Properties of a Domestic Safe-End Dissimilar Metal Weld Joint by Using Hot-Wire GTAW[J]. Acta Metallurgica Sinica,2017,53(01):57-69.
Ming H L, Zhang Z M, Xiu P Y, et al. Microstructure, residual strain and stress behavior in 316L heat-affected zone[J]. Acta Metallurgica Sinica-English Letters, 2016, 29(9): 848-858.
Qi S, Xiang W, Cai L, et al. Study on micro-structure and tensile mechanical properties of dissimilar metal weld joint connecting steam generator nozzle and safe-end[J]. Crystals, 2021, 11(12): 1470.
Peng Q, Xue H, Hou J, et al. Role of water chemistry and microstructure in stress corrosion cracking in the fusion boundary region of an Alloy 182-A533B low alloy steel dissimilar weld joint in high temperature water[J]. Corrosion Science, 2011, 53(12): 4309-4317.
Tomota Y, Daikuhara S, Nagayama S, et al. Stress corrosion cracking behavior at inconel and low alloy steel weld interfaces[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2014, 45A(13): 6103-6117.
Nelson T, Lippold J, Mills M. Nature and evolution of the fusion boundary in ferritic-austenitic dissimilar metal welds - Part 2: On-cooling transformations[J]. WELDING JOURNAL, 2000, 79(10): 267-277.
Nelson T, Lippold J, Mills M. Nature and evolution of the fusion boundary in ferritic-austenitic dissimilar weld metals, Part 1-Nucleation and growth[J]. Welding Journal, 1999, 78(10): 329-337.
WU Y, PATCHETT B. Formation of crack-susceptible structures of weld overlay of corrosion-resistant alloys[C]//Materials Performance:Sulphur and Energy,1992:283-295.
Ahonen M,Mouginot R,Sarikka T,et al. Effect of thermal ageing at 400 degrees C on the microstructure of ferrite-austenite interface of nickel-base alloy narrow-gap dissimilar metal weld[J].Metals,2020,10(3):421.
Hou J, Peng Q, Takeda Y, et al. Microstructure and stress corrosion cracking of the fusion boundary region in an alloy 182-A533B low alloy steel dissimilar weld joint[J]. Corrosion Science,2010,52(12):3949-3954.
Chung W C, Huang J Y, Tsay L W, et al. Microstructure and stress corrosion cracking behavior of the weld metal in Alloy 52-A508 dissimilar welds[J]. Materials Transactions, 2011, 52(1): 12-19.
丁杰, 张志明, 王俭秋, 等. 三代核电接管安全端异种金属焊接接头的显微表征[J]. 金属学报, 2015, 51(04): 425-439.
DING J,ZHANG Z M,WANG J Q,et al.Micro-characterization of dissimilar metal weld joint for connecting pipenozzle to safe-end in Generation III nuclear power plant[J].Acta Metallurgica Sinica, 2015, 51(04): 425-439.
侯娟, 彭群家, 庄子哲雄, 等. 镍基合金焊接过渡区微观结构及应力腐蚀行为研究[J]. 金属学报, 2010, 46(10): 1258-1266.
HOU J,PENG Q J,SHOJI T,et al.Study of microstructure and stress corrosion cracking behavior in welding transition zone of Ni-based alloys[J]. Acta Metallurgica Sinica,2010, 46(10): 1258-1266.
Srinivasan P B, Muthupandi V, Dietzel W, et al. An assessment of impact strength and corrosion behaviour of shielded metal arc welded dissimilar weldments between UNS 31803 and IS 2062 steels[J]. Materials & Design, 2006, 27(3): 182-191.
Bhaduri A K, Venkadesan S, Rodriguez P, et al. Transition metal joints for steam generators—An overview[J]. International Journal of Pressure Vessels and Piping, 1994, 58(3): 251-265.
冯杰才, 刘树磊, 骆传万, 等. 核电异种金属焊接材料及方法研究现状[J]. 焊接, 2022(3): 52-57.
FENG J C,LIU S L,LUO C W,et al.Research status of welding materials and methods for dissimilar metals in nuclear power[J]. Welding & Joining,2022(3):52-57.
Xiong Q, Li H, Lu Z, et al. Characterization of microstructure of A508Ⅲ/309L/308L weld and oxide films formed in deaerated high-temperature water[J]. Journal of Nuclear Materials, 2018, 498: 227-240.
Tsai W T, Liaw C M, Lee J T. Effect of TiC on the stress corrosion cracking of austenitic stainless steel[J]. Materials Characterization,1990,24(2):199-204.
Tukur H. Oxidation and deformation behaviours of the 316L stainless-steel weldments in nuclear plants[J]. International Journal of Electrochemical Science, 2020: 2115-2132.
White G, Gorman J, Nordmann N, et al. Materials reliability program crack growth rates for evaluating primary water stress corrosion cracking (PWSCC) of Alloy 82, 182, and 132 welds[J]. Palo Alto, California: EPRI, 2004.
Olson M D, Hill M R, Clausen B, et al. Residual stress measurements in dissimilar weld metal[J]. Experimental Mechanics, 2015, 55(6): 1093-1103.
Lundin C. Dissimilar metal welds-transition joints literature review[J].Welding Journal,1982,61(2):58-63.
Hou J,Peng Q J,Takeda Y,et al. Microstructure and mechanical property of the fusion boundary region in an Alloy 182-low alloy steel dissimilar weld joint[J]. Journal of Materials Science,2010,45(19):5332-5338.
Xue H, Ogawa K, Shoji T. Effect of welded mechanical heterogeneity on local stress and strain ahead of stationary and growing crack tips[J]. Nuclear Engineering and Design, 2009, 239(4): 628-640.
Lu B T,Chen Z K,Luo J L,et al. Pitting and stress corrosion cracking behavior in welded austenitic stainless steel[J].Electrochimica Acta,2005,50(6):1391-1403.
Tsuruta T,Sato K,Asada S,et al. PWSCC of nickel base alloys in vapor phase environment of pressurizer[C]//Icone16:Proceeding of the 16th International Conference on Nuclear Engineering,New York: Amer Soc Mechanical Engineers, 2008: 571-573.
朱若林, 张志明, 王俭秋, 等. 核电异种金属焊接接头的应力腐蚀裂纹扩展行为研究进展[J]. 中国腐蚀与防护学报, 2015, 35(3): 189-198.
ZHU R L,ZHANG Z M,WANG J Q,et al. Review on SCC Crack Growth Behavior of Dissimilar Metal Welds for Nuclear Power Reactors[J]. Journal of Chinese Society for Corrosion and Protection,2015,35(3):189-198.
Brust F W, Scott P M. Weld residual stresses and primary water stress corrosion cracking in bimetal nuclear pipe welds[C]//Lidbury D. Proceedings of the Asme Pressure Vessels and Piping Conference 2007, Vol 6: Materials and Fabrication. New York: Amer Soc Mechanical Engineers, 2007: 883-897.
赵凌燕. 核电焊接接头裂尖力学特征及环境致裂裂纹扩展速率研究[D]. 陕西:西安科技大学,2014.
ZHAO L Y. Research on the Mechanical Characteristics of Nuclear Power Welding Joint Crack Tip and Environmental Induced Crack Growth Rate[D].Shanxi:Xi’an University of Science and Technology,2014.
董立谨. 核电站一回路主管道安全端焊接接头环境促进开裂研究[D]. 辽宁:东北大学, 2018.
DONG L J.Research on promoting cracking of welding joints at the safe-end of the primary pipeline in nuclear power plants[D].Liaoning:Northeastern University,2018.
Li G F, Congleton J. Stress corrosion cracking of a low alloy steel to stainless steel transition weld in PWR primary waters at 292 degrees C[J]. Corrosion Science, 2000, 42(6): 1005-1021.
Lee H T, Wu J L. Intergranular corrosion resistance of nickel-based alloy 690 weldments[J]. Corrosion Science, 2010, 52(5): 1545-1550.
Wang Z, Xu J, Shoji T, et al. Microstructure and pitting behavior of the dissimilar metal weld of 309L cladding and low alloy steel A533B[J]. Journal of Nuclear Materials, 2018, 508: 1-11.
Santosh R, Das G, Kumar S, et al. Experimental and computational investigation of structural integrity of dissimilar metal weld between ferritic and austenitic steel[J]. Metallurgical and Materials Transactions A, 2018, 49(6): 2099-2112.
Ghosh A,Sahu M,Singh P K,et al. Assessment of mechanical properties for dissimilar metal welds: a nondestructive approach[J]. Journal of Materials Engineering and Performance, 2019, 28(2): 900-907.
Orr M R, Lippold J C, Argentine F. Evaluation of solidification cracking susceptibility in ERNiCr-3 (Filler Metal 82) weld metal using the cast pin tear test[J]. Welding in the World, 2017, 61(5): 935-944.
Lee H T, Kuo T Y. Analysis of microstructure and mechanical properties in alloy 690 weldments using filler metals I-82 and I-52[J]. Science and Technology of Welding and Joining, 1999, 4(2): 94-103.
Kuo T Y, Lee H T. Effects of filler metal composition on joining properties of alloy 690 weldments[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2002, 338(1-2): 202-212.
Lee H T,Jeng S L.Characteristics of dissimilar welding of alloy 690 to 304L stainless steel[J].Science and Technology of Welding and Joining,2001,6(4):225-234.
Lin C M. Relationships between microstructures and properties of buffer layer with Inconel 52M clad on AISI 316L stainless steel by GTAW processing[J]. Surface and Coatings Technology, 2013, 228: 234-241.
Jeng S L, Chang Y H. The influence of Nb and Mo on the microstructure and mechanical properties of Ni-Cr-Fe GTAW welds[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2012, 555: 1-12.
Hope A T, Lippold J C. Development and testing of a high-chromium, Ni-based filler metal resistant to ductility dip cracking and solidification cracking[J]. Welding in the World, 2017, 61(2): 325-332.
Andresen P L, Morra M M, Ahluwalia K. SCC of alloy 152/52 welds defects, repairs and dilution zones in PWR water[C]//Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems–Water Reactors. Springer, 2019: 27-53.
Hur D H, Choi M S, Lee D H, et al. Corrosion inhibition of steam generator tubesheet by Alloy 690 cladding in secondary side environments[J]. Journal of Nuclear Materials, 2013, 442(1-3): 326-329.
Lin Y D, Lee H T, Kuo T Y, et al. Effects of beam offset on mechanical properties and corrosion resistance of Alloy 690-SUS 304L EBW joints for nuclear power plant[J]. Journal of Nuclear Materials, 2010, 401(1-3): 78-85.
Kim J W, Lee K, Kim J S, et al. Local mechanical properties of Alloy 82/182 dissimilar weld joint between SA508 Gr.1a and F316 SS at RT and 320 degrees C[J]. Journal of Nuclear Materials, 2009, 384(3): 212-221.
Xu F, Lv Y, Liu Y, et al. Microstructural Evolution and Mechanical Properties of Inconel 625 Alloy during Pulsed Plasma Arc Deposition Process[J]. Journal of Materials Science & Technology, 2013, 29(5): 480-488.
Li G, Lu X, Zhu X, et al. The interface microstructure, mechanical properties and corrosion resistance of dissimilar joints during multipass laser welding for nuclear power plants[J]. Optics and Laser Technology, 2018, 101: 479-490.
Cheng B, Wu D, Liu J, et al. Adjust dilution level to suppress the precipitated phase by dilution level model of dissimilar metal laser welding with filler wire[J]. Optics and Laser Technology, 2020, 125: 106025.
Zuback J S, Palmer T A, DebRoy T. Additive manufacturing of functionally graded transition joints between ferritic and austenitic alloys[J]. Journal of Alloys and Compounds, 2019, 770: 995-1003.
Feng J, Guo W, Irvine N, et al. Understanding and elimination of process defects in narrow gap multi-pass fiber laser welding of ferritic steel sheets of 30 mm thickness[J]. International Journal of Advanced Manufacturing Technology, 2017, 88(5-8): 1821-1830.
Feng J C, Rathod D W, Roy M J, et al. An evaluation of multipass narrow gap laser welding as a candidate process for the manufacture of nuclear pressure vessels[J]. International Journal of Pressure Vessels and Piping, 2017, 157: 43-50.
Feng J, Guo W, Francis J, et al. Narrow gap laser welding for potential nuclear pressure vessel manufacture[J]. Journal of Laser Applications, 2016, 28(2): 022421.
Stone H J, Roberts S M, Reed R C. A process model for the distortion induced by the electron-beam welding of a nickel-based superalloy[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2000, 31(9): 2261-2273.
Lim Y S, Kim J S, Kwon H S. Effects of sensitization treatment on the evolution of Cr carbides in rapidly solidified Ni-base alloy 600 by a CO2 laser beam[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2000, 279(1-2): 192-200.
Sun Z, Karppi R. The application of electron beam welding for the joining of dissimilar metals: An overview[J]. Journal of Materials Processing Technology, 1996, 59(3): 257-267.
Ruge J, Oestmann C, Decker I, et al. Welding of dissimilar metals by using the method of electron beam welding with filler wire[C]//Electron and laser beam welding. International Conference,1986: 193-203.
Ruge J, Oestmann C, Decker I. Joint quality of EB welds using filler wire(EBW-FW)[J]. The Welding Institute, 1987: 351-359.
Maleki E, Farrahi G H, Reza Kashyzadeh K, et al. Effects of conventional and severe shot peening on residual stress and fatigue strength of steel AISI 1060 and residual stress relaxation due to fatigue loading: Experimental and numerical simulation[J]. Metals and Materials International, 2021, 27(8): 2575-2591.
Muhammad F, Ahmad A, Farooq A, et al. Effect of post-weld heat treatment on mechanical and electrochemical properties of gas metal arc-welded 316L (X2CrNiMo 17-13-2) stainless steel[J]. Journal of Materials Engineering and Performance, 2016, 25(10): 4283-4291.
Liu Y, Tang S, Liu G, et al. Effect of residual stress relaxation by means of local rapid induction heating on stress corrosion cracking behavior and electrochemical characterization of welded Ti-6Al-4V alloy under slow strain rate test[J]. Metals and Materials International, 2017, 23(3): 488-498.
Huang J Y, Yung T Y, Huang J S, et al. Effects of heat treatment and chromium content on the environmentally assisted cracking behavior of the dissimilar metal welds in simulated BWR coolant environments[J]. Corrosion Science, 2013, 75: 386-399.
Huang J Y, Chiang M F, Jeng S L, et al. Environmentally assisted cracking behavior of dissimilar metal weldments in simulated BWR coolant environments[J]. Journal of Nuclear Materials, 2013, 432(1-3): 189-197.
Yeh T K, Huang G R, Wang M Y, et al. Stress corrosion cracking in dissimilar metal welds with 304L stainless steel and Alloy 82 in high temperature water[J]. Progress in Nuclear Energy, 2013, 63: 7-11.
Huang J Y, Chiang M F, Kuo R C, et al. Stress corrosion cracking behavior of dissimilar metal weldments in high temperature water environments[C]//15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Chichester: John Wiley & Sons, 2011: 1105-1122.
编辑部网址:http://www.71dhj.comhttp://www.71dhj.com
相关作者
相关机构