金属增材制造检测技术的应用研究及展望
Application Research and Prospect of Inspection Technology for Metal Additive Manufacturing
- 2023年53卷第10期 页码:1-9
DOI: 10.7512/j.issn.1001-2303.2023.10.01
扫 描 看 全 文
扫 描 看 全 文
吕新峰,宋辉,胡娟,等.金属增材制造检测技术的应用研究及展望[J].电焊机,2023,53(10):1-9.
LV Xinfeng, SONG Hui, HU Juan, et al.Application Research and Prospect of Inspection Technology for Metal Additive Manufacturing[J].Electric Welding Machine, 2023, 53(10): 1-9.
金属增材制造将先进制造、数字制造、智能制造和绿色制造结合在一起,有效解决了传统铸造或锻造加工过程中的难点,是材料加工领域中最有应用前景的技术之一。但现阶段增材制造产品质量的一致性和可靠性还亟需解决,而检测在产品质量控制中具有举足轻重的作用且贯穿增材制造始终,可有力促进该技术的规范化、健康化及高质量发展。基于此,主要从原材料、设备、工艺过程及成形件性能评估几个角度介绍金属增材制造的检测技术应用研究现状,并由此对检测技术未来的发展提出了展望。
Metal additive manufacturing combines advanced manufacturing, digital manufacturing, intelligent manufacturing, and green manufacturing, effectively solving the difficulties in traditional casting or forging processes, and is one of the most promising technologies in the field of material processing. However, at present, the consistency and reliability of additive manufacturing product quality still need to be urgently addressed, and testing plays a crucial role in product quality control and runs through additive manufacturing, which can effectively promote the standardization, health, and high-quality development of this technology. This paper mainly describes the research progress of additive manufacturing from the viewpoint of the detection status of raw materials, equipment, process and parts. At the same time, based on the status, the future development trend of additive manufacturing detection is proposed.
金属增材制造检测研究现状展望
metaladditive manufacturinginspectionapplication researchdevelopment trend
朱忠良, 赵凯, 郭立杰, 等. 大型金属构件增材制造技术在航空航天制造中的应用及其发展趋势[J]. 电焊机, 2020, 50(1): 1-14.
ZHU Z L, ZHAO K, GUO L J, et al. Application and development trend of additive manufacturing technology of large-scale metal component in aerospace manufacturing[J]. Electric Welding Machine, 2020, 50(1):1-14.
Yadav P, Rigo O, Arvieu C, et al. In Situ Monitoring Systems of The SLM Process: On the Need to Develop Machine Learning Models for Data Processing [J]. Crystals. 2020, 10, 524.
Benson J M, Snyders E. The need for powder characterisation in the additive manufacturing industry and the establishment of a national facility. The South African Journal of Industrial Engineering. 2015, 26(2). 104.
Mani M, Lane B, Donmez M, et.al. Measurement Science Needs for Real-time Control of Additive Manufacturing Powder Bed Fusion Processes[EB/OL]. [2015-03-15]. https://doi.org/10.6028/NIST.IR.8036https://doi.org/10.6028/NIST.IR.8036.
Plessis A du, J Razavi S M, Benedetti M, et al. Properties and applications of additively manufactured metallic cellular materials: A review [J]. Progress in Materials Science, 2022, 125, 100918.
Chen Z, Han C, Gao M, et al. A review on qualification and certification for metal additive manufacturing [J]. Virtual and Physical Prototyping, 2022, 17(2): 382-405.
The National Institute of Standards and Technology. Measurement science roadmap for metal-based additive manufacturing[R].Energetics Incorporated, Columbia, Maryland, 2013.
李礼, 戴煜. 浅析激光选区熔化增材制造专用粉末特性[J]. 新材料产业, 2018(1): 56-60.
LI L,DAI Y.Analysis of the Characteristics of Special Powder for Laser Selective Melting Additive Manufacturing[J]. Advanced Materials Industry, 2018(1): 56-60.
柳宝元. SLM用TC4粉末循环老化行为及对制件性能影响[D]. 辽宁:沈阳航空航天大学, 2018.
LIU B Y. Cyclic aging behavior of TC4 powder and its effect on the properties of SLM components[D]. Liaoning:Shenyang Aerospace University,2018.
Lyckfeldt O. Proceedings of the Euro PM 2013 Congress & Exhibition[C]//Shrewsbury, U K, European Powder Metallurgy Association,2013: 225-230.
Ferraris C F, Guthrie W, Aviles A I, et al. Certification of SRM 114q: Part II (Particle Size Distribution)[R]. NIST Special Publication:Gaithersburg, MD,NIST, 2006:260-166.
吕威闫, 杨番, 韩国峰,等. VIGA和EIGA气雾化法制备增材制造用低合金钢粉末[J]. 中国表面工程, 2020, 33(5): 115-122.
LV W Y,YANG F,HAN G F,et al. Preparation of Low-alloy Steel Powders for Additive Manufacturing by VIGA and EIGA Gas Atomization[J]. China Surface Engineering,2020, 33(5): 115-122.
Chen G, Zhao S Y, Tan P, et al. A comparative study of Ti6Al4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization [J]. Powder Technology, 2018, 333: 38-46.
Cunningham R, Nicolasb A, Madsen J, et al. Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti6Al4V[J]. Materials Research Letters, 2017, 5(7), 516-525.
Sing S L, Yeong W Y, Wiria F E, et al. Characterization of titanium lattice structures fabricated by selective laser melting using an adapted compressive test method [J]. Exp. Mech, 2016, 56, 735-748.
Moylan S, Slotwinski J, Cooke A, et al. An Additive Manufacturing Test Artifact [J]. Journal of Research of the National Institute of Standards and Technology, 2014, 119, 429-459.
Mani M, Lane B M, Donmez M A, et al. Measurement Science Needs for Real-time Control of Additive Manufacturing Powder Bed Fusion Processes[R]. 2015. NISTIR 8036.
Masinelli G, Shevchik S A, Pandiyan V, et al. Artificial Intelligence for Monitoring and Control of Metal Additive Manufacturing[C]//Industrializing Additive Manufacturing,AMPA 2020,Springer,Cham:205-220.
Lu Y, Sun G, Xiao X, et al. Online Stress Measurement During Laser-aided Metallic Additive Manufacturing[J]. Scientific report, 2019, 7360.
Bamberg J, Dusel K H, Satzger W. Overview of Additive Manufacturing Activities at MTU Aero Engines[C]//AIP conference proceedings, 2015, 164-170.
Cunningham R, Zhao C, Parab N, et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging[J]. Science,2019,363:849-852.
Qian T T, Liu D, Tian X J, et al. Microstructure of TA2/TA15 graded structural material by laser additive manufacturing process[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(9): 2729-2736.
谭霆. 激光增材制造钛合金成分探测与显微组织分析[D]. 湖南:湖南大学, 2014.
TAN T. Composition detection and microstructure analysis of titanium alloy in laser additive manufacturing[D]. Hunan:Hunan University,2014.
Velasco-Castro M, Hernandez-Nava E, Figueroa I A, et al. The effect of oxygen pickup during selective laser melting on the microstructure and mechanical properties of Ti-6Al-4V lattices[J]. Heliyon, 2019, 5:e02813.
Brandão A D, Gerard R, Gumpinger J, et al. Challenges in Additive Manufacturing of Space Parts: Powder Feedstock Cross-Contamination and Its Impact on End Products [J]. Materials, 2017, 10:522.
Montazeri M,Yavari R, Rao P,et al. In process monitoring of material cross contamination defects in laser powder bed fusion[C]//Proceedings of the ASME 2018 13th International Manufacturing Science and Engineering Conference. 2018, 140(11): 1-19.
林开杰, 吴立斌, 杨建凯, 等. 激光增材制造拓扑优化轻量化圆锥构件力学性能研究[J]. 航空制造技术,2022, 65(14): 101-109.
LIN K J,WU L B,YANG J K,et al. Mechanical Properties of Topologically Lightweight Conical Components Fabricated by Laser Additive Manufacturing[J]. Aeronautical Manufacturing Technology,2022,65(14):101-109.
垄程. 基于增材制造的功能梯度点阵结构设计及其力学性能研究[D]. 重庆:重庆大学,2021.
LONG C. Design and Mechanical Properties of Functional Gradient Lattice Structure Based on Additive Manufacturing[D]. Chongqing:Chongqing University,2021.
唐诗. 增材制造中激光超声表面缺陷检测技术[D]. 四川:电子科技大学, 2019.
TANG S. Laser ultrasonic surface defect detection technology in additive manufacturing[D]. Sichuan:University of Electronic Science and Technology of China,2019.
汤慧萍, 王健, 逯圣路, 等. 电子束选区熔化成形技术研究进展[J]. 中国材料进展,2015,34(3):225-235.
TANG H P,WANG J,LU S L,et al. Research Progress in Selective Electron Beam Melting[J]. Materials China, 2015, 34(3): 225-235.
杨平华, 史丽军, 梁菁, 等. TC18钛合金增材制造材料超声检测特征的试验研究[J]. 航空制造技术,2017(5): 38-42.
YANG P H,SHI L J,LIANG J,et al. Experimental Research on Ultrasonic Characteristics of TC18 Additive Manufacturing Titanium Alloy[J]. Aeronautical Manufacturing Technology, 2017(5): 38-42.
张祥春, 张祥林, 刘钊, 等. 工业CT技术在激光选区熔化增材制造中的应用[J]. 无机检测,2019, 41(3): 52-57.
ZHANG X C,ZHANG X L,LIU Z,et al. Application of Industrial CT Technology for Additive Manufacturing Product by Selective Laser Melting[J]. Nondestructive Testing,2019, 41(3): 52-57.
Lévesque D, Bescond C, Lord M, et al. Inspection of Additive Manufactured Parts Using Laser Ultrasonics [C]//AIP Conference Proceedings, 2016, 130003-1-130003-9.
Felix S, Mathews H K, Lexa M, et al. In situ process quality monitoring and defect detection for direct metal laser melting [J]. Scientific report. 2022, 12: 8503.
Langnau L. Arcam Introduces Two New Additive Manufacturing Machines [EB/OL]. 2016. https://www.makepartsfast.com/arcam-introduces-two-new-additive-manufacturing-machines/https://www.makepartsfast.com/arcam-introduces-two-new-additive-manufacturing-machines/.
Alberts D,Schwarze D,Witt G. In Situ Melt Pool Monitoring and the Correlation to Part Density of Inconel®718 for Quality Assurance in Selective Laser Melting[C]. 2017 International Solid Freeform Fabrication Symposium,Germany, 2017. https://hdl.handle.net/2152/89958https://hdl.handle.net/2152/89958.
Fuchs L,Eischer C. In-process monitoring systems for metal additive manufacturing[EB/OL].https://www.eos -apac.info/upload/2020-07/159522956575650000.pdfhttps://www.eos-apac.info/upload/2020-07/159522956575650000.pdf.
Prater T. Database development for additive manufacturing[J]. Progress in Additive Manufacturing, 2017, 2:11-18.
相关作者
相关机构