钎焊温度对TA1/Ti-Zr-Cu-Ni-Ag/TA1接头界面组织性能的影响
Effect of Brazing Temperature on Interfacial Microstructure and Mechanical Property of TA1/Ti-Zr-Cu-Ni-Ag/TA1 Joint
- 2023年53卷第8期 页码:78-85
DOI: 10.7512/j.issn.1001-2303.2023.08.10
扫 描 看 全 文
扫 描 看 全 文
陈修凯,路英瑶,卞红,等.钎焊温度对TA1/Ti-Zr-Cu-Ni-Ag/TA1接头界面组织性能的影响[J].电焊机,2023,53(8):78-85.
CHEN Xiukai, LU Yingyao, BIAN Hong, et al.Effect of Brazing Temperature on Interfacial Microstructure and Mechanical Property of TA1/Ti-Zr-Cu-Ni-Ag/TA1 Joint[J].Electric Welding Machine, 2023, 53(8): 78-85.
采用Ti-Zr-Cu-Ni-Ag钎料进行TA1钛合金的连接,并使用光学显微镜(OM)、扫描电子显微镜(SEM)和能谱仪(EDS)等分析测试手段对不同钎焊温度下获得的接头界面组织和断口形貌进行了分析。研究表明,TA1/Ti-Zr-Cu-Ni-Ag/TA1接头典型界面微观组织为α-Ti/α-Ti+β-Ti+(α-Ti+γ)/α-Ti。随着钎焊温度的升高,钎缝宽度呈先增加后减小的趋势,共析组织更加分散,α-Ti组织逐渐增多,α-Ti和(α-Ti+γ)的片层状结构也逐渐明显;剪切试验表明当钎焊温度为900 ℃,保温时间为20 min时,钎焊接头的抗剪强度达到172.04 MPa的峰值,接头的断裂模式为韧脆混合断裂;接头平均抗拉强度为260.04 MPa,达到了母材的65%。
The connection of TA1 titanium alloy was successfully realized by using Ti-Zr-Cu-Ni-Ag filler. The interfacial microstructure and Fracture morphology of joints brazed at different temperature were analyzed by optical microscope (OM),scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The results showed that the typical interfacial microstructure of TA1/Ti-Zr-Cu-Ni-Ag/TA1 joint was α-Ti/α-Ti+β-Ti+(α-Ti+γ)/α-Ti. With the increase of temperature, the width of the brazing seam increases first and then decreases, the eutectoid structure is more dispersed, α- Ti tissue gradually increases,and the lamellar structure of α-Ti and (α-Ti+γ) is gradually obvious The shear test indicated that the joint brazed at 900 ℃ for 20 min exhibited the average highest shear strength of 172.04 MPa, and the fracture mode of the joint is ductile brittle mixed fracture. The average tensile strength of the joint is 260.04 MPa, which is 65% of the base metal.
钎焊温度TA1钛合金Ti-Zr-Cu-Ni-Ag钎料界面组织性能
TA1 titanium alloyTi-Zr-Cu-Ni-Ag fillerbrazinginterfacial microstructuremechanical property
PAGNONI F, AYEL V, BERTIN Y, COULLOUX J, et al. Loop heat pipe for thermal management of aircraft engine equipment[J]. Journal of Thermophysics and Heat Transfer, 2021, 35(2):323-334.
MISSIRLIS D, YAKINTHOS K, PALIKARAS A, et al. Experimental and numerical investigation of the flow field through a heat exchanger for aeroengine applications[J]. International Journal of Heat and Fluid Flow, 2005, 26(3):440-458.
THOMPSON S M, ASPIN Z S, SHAMSAEI N, et al. Additive manufacturing of heat exchangers: A case study on a multi-layered Ti-6Al-4V oscillating heat pipe[J]. Additive Manufacturing, 2015(8):163-174.
QIN J, KANG S, CHO J. Sagging mechanisms in the brazing of aluminum heat exchangers[J]. Scripta materialia, 2013, 68(12):941-944.
薛焘,佘志鸿,陈诚,等. 板翅式换热器技术的发展与应用[J]. 化工装备技术, 2016, 37(04):22-25.
XUE T, SHE Z H, CHEN C, et al. Technological development and application of plate-fin heat exchanger[J]. Chemical Equipment Technology, 2016, 37(04):22-25.
杨明举. 浅论现代汽车发动机冷却系统发展特点[J]. 科技创新与应用, 2014(27):131.
YANG M J. Development characteristics of modern auto- mobile engine cooling system[J]. Technology Innovation and Application, 2014(27):131.
郑文远,金龙兵,马洪星. 6951铝合金在航空板翅式换热器中的应用研究[J]. 轻合金加工技术, 2014, 42(06): 48-51.
ZHENG W Y, JING L B, MA H X. Research on the application of 6951 aluminum alloy in the aeronautic plate-fin heat exchanger[J]. Light Alloy Fabrication Technology, 2014, 42(06):48-51.
梁海. 钛热交换器的真空钎焊[J]. 航空制造技术, 2015(17):124-126.
LIANG H. Vacuum brazing of Titanium heat exchangers[J]. Aeronautical Manufacturing Technology, 2015(17):124-126.
方乃文,黄瑞生,谢吉林,等.大厚度TC4钛合金超窄间隙激光填丝焊接头组织性能研究[J].电焊机,2022,52(6):25-34.
FANG N W, HUANG R S, XIE J L, et al. Study on properties and microstructures of large thickness TC4 Titanium alloy welded joint by Ultra-Narrow gap laser welding using filler wire[J]. Electric Welding Machine, 2022(06): 25-34.
黄瑞生,方乃文,武鹏博等.厚壁钛合金熔化焊接技术研究现状[J].电焊机,2022,52(6):10-24.
HUANG R S, FANG N W;WU P B, et al. Research status of thick plate Titanium Alloy fusion welding technology[J]. Electric Welding Machine, 2022(06) ,52(6):10-24.
黄志超,宋天赐,赖家美. TA1钛合金自冲铆接接头疲劳性能及失效机理分析[J]. 焊接学报, 2019, 40(03):41-46.
HUANG Z C, SONG T C, LAI J M. Fatigue property and failure mechanism of self piercing riveted joints of TA1 titanium alloy[J]. Transactions of the China Welding Institution,2019, 40(03):41-46.
卞红, 胡胜鹏, 宋晓国,等. 钎焊温度对Ti60/AgCu/ ZrO2接头界面组织及性能的影响[J]. 航空学报, 2017; 38(12): 337-345.
BIAN H, HU S P, SONG X G, et al. Effect of brazing temperature on interfacial microstructure and mechanical property of Ti60/AuCu/ZrO2 joint[J]. Acta Aeronautica et Astronautica Sinica, 2017,38(12):337-345.
CAVALEIRO AJ, RAMOS AS, BRAZ F FM, et al. Follow-up structural evolution of Ni/Ti reactive nano and microlayers during diffusion bonding of NiTi to Ti6Al4V in a synchrotron beamline[J]. Journal of Materials Processing Technology 2020, 275:116354.
WEN J, HUANG H, LI H, et al. Thermal and hydraulic performance of a compact plate finned tube air-fuel heat exchanger for aero-engine[J]. Applied Thermal Engineering, 2017, 126:920-928.
钟素娟,刘攀,秦建,等.钛合金板翅式散热器钎焊的研究进展[J].电焊机,2022,52(6):1-9.
ZHONG S,J, LIU P, QIN J, et al. Research progress of brazing Titanium alloy plate fin heat exchanger[J]. Electric Welding Machine, 2022,52(6):1-9.
王星星,龙伟民,马佳,等. 锡镀层对BAg50CuZn钎料性能的影响[J]. 焊接学报, 2014, 35(09): 61-64.
WANG X X, LONG W M, MA J, et al. Effect of electroplated tin coating on properties of BAg50CuZn brazing filler metal[J]. Transactions of the China Welding Institution, 2014(09): 61-64.
龙伟民,乔培新,王海滨,等. 粉末合成钎料的探讨[J]. 机械工程学报, 2001(10): 107-108.
LONG W M, QIAO P X, WANG H B, et al. Discussion of powder of synthetic filler materials[J]. Chinese Journal of Mechanical Engineering,2001(10):107-108.
龙伟民,张冠星,张青科,等. 钎焊过程原位合成高强度银钎料[J]. 焊接学报,2015, 36(11): 1-4+113.
LONG W M, ZHANG G X, ZHANG Q K, et al. In-situ synthesis of high strength Ag brazing filler metals during brazing process[J]. Transactions of the China Welding Institution, 2015, 36(11): 1-4+113.
刘师田, 杨凯珍. 纯钛TA2真空钎焊用Ti-19Zr-40Cu钎料的研究[J]. 广东化工, 2013, 40(14):41-42.
LIU S T,YANG K Z. Study of Ti-19Zr-40Cu filler metal for vacuum brazing of pure titanium TA2[J]. Guangdong Chemical Industry, 2013, 40(14):41-42.
JING Y, YUE X, GAO X, et al. The influence of Zr content on the performance of TiZrCuNi brazing filler[J]. Materials Science and Engineering:A, 2016, 678:190-196.
JING Y, YANG H, SHANG Y, et al. The design of a new Ti-Zr-Cu-Ni-Ag brazing filler metal for brazing of titanium alloys[J]. Welding in the World, 2021, 65(11):2231-2237.
ELREFAEY A, TILLMANN W. Effect of brazing parameters on microstructure and mechanical properties of titanium joints[J]. Journal of Materials Processing Technology, 2009, 209(10):4842-4849.
MASSALSKI T B, OKAMOTO H, SUBRAMANIAN P R, et al. Binary alloy phase diagrams-second edition[M]. Metals Park, Ohio: ASM International, 1990:2601, 4827.
卞红,田骁,冯吉才, 等. TC4/Ti60合金钎焊接头界面组织及力学性能[J]. 焊接学报, 2018, 39(05):33-36.
BIAN H, TIAN X, FENG J C, et al. Interfacial microstructure and mechanical properties of TC4/Ti60 brazed joints[J]. Transactions of the China Welding Institution. 2018, 39(05):33-36.
蒋睿. 钛合金真空电子束焊接接头组织与性能研究[D]. 四川:西华大学, 2020.
JIANG R. The research on microstructure and properties of Titanium joint by vacuum electron beam welding[D]. Sichuan: Xihua University, 2020.
焦曼. Ti2AlNb与TC4合金真空钎焊接头界面组织与力学性能[D]. 天津:天津大学, 2017.
JIAO M. Interfacial microstructure and mechanical properties of Ti2AlNb/TC4 vacuum brazed joint[D].Tianjin:Tianjin University, 2017.
相关文章
相关作者
相关机构