超声冲击改善铝合金焊接接头组织和性能的研究进展
Progress of Ultrasonic Impact Treatment in Improving the Microstructure and Properties of Aluminum Alloy Welding Joints
- 2023年53卷第8期 页码:36-45
DOI: 10.7512/j.issn.1001-2303.2023.08.06
扫 描 看 全 文
扫 描 看 全 文
孙徕博, 黄瑞生, 武鹏博, 等. 超声冲击改善铝合金焊接接头组织和性能的研究进展[J]. 电焊机, 2023,53(8):36-45.
SUN Laibo, HUANG Ruisheng, WU Pengbo, et al. Progress of Ultrasonic Impact Treatment in Improving the Microstructure and Properties of Aluminum Alloy Welding Joints[J]. Electric Welding Machine, 2023,53(8):36-45.
铝合金焊接过程中存在的裂纹、组织粗大、残余应力和变形等问题一直制约着该领域的发展。超声冲击处理(Ultrasonic impact treatment, UIT)作为辅助强化焊接接头的手段之一,能够有效地细化组织、改善应力状态和表面粗糙度,并有效提高焊接接头的拉伸性能、疲劳性能和抗腐蚀性能。为了更好地理解超声冲击对铝合金焊接接头的作用和影响,推动超声冲击技术在铝合金焊接领域得到更广泛的应用,在此基于超声冲击的工作原理,介绍了其对不同类型的铝合金焊接接头微观组织形态、应力分布、表面粗糙度、综合性能和内部缺陷的影响,以期为超声冲击辅助铝合金焊接过程提供帮助,最后对超声冲击在铝合金焊接领域中尚需深入研究的问题和发展方向进行了展望。
The problems of cracking, coarse microstructure, residual stress and deformation in the welding process of aluminum alloy have been restricting the development of this field. Ultrasonic impact treatment (UIT), as one of the strengthening means to assist in strengthening welded joints, can effectively refine the microstructure, improve the stress state, surface roughness, the tensile properties, fatigue properties and corrosion resistance of welded joints. This paper aims to better understand the role and effect of ultrasonic impact treatment on aluminum alloy welded joints and promote the technology in the field of aluminum alloy welding more widely used. It bases on the working principle of ultrasonic impact treatment to elaborate the effect on microstructure morphology, stress distribution, surface roughness, comprehensive performance and internal defects in different types of aluminum alloy welded joints. It is expected to provide help for ultrasonic impact treatment assisted aluminum alloy welding process. Finally, the issues and development directions that need to be further investigated in the field of aluminum alloy welding using ultrasonic impact treatment were prospected.
铝合金超声冲击处理焊接接头组织和性能
aluminum alloyultrasonic impact treatmentwelding jointmicrostructure and properties
路全彬,龙伟民,钟素娟,等.铝合金焊接材料制备研究现状与发展[J]. 焊接, 2016(02): 6-9.
LU Q B, LONG W M, ZHONG S J, et al. Status and development of preparation for aluminum alloy welding materials[J]. Welding & Joining, 2016(02): 6-9.
龙伟民, 井培尧, 秦建. 极端条件下焊接技术的研究进展[J]. 电焊机. 2023, 54(4): 1-13.
LONG W M, JING P Y, QIN J. Research Progress of Welding Technology Under Extreme Conditions[J]. Electric Welding Machine, 2023, 53(4): 1-13.
LI J G, WANG S Q. Distriction caused by residual stress in machining Aeronautic aluminum alloy parts: recent advances[J]. International Journal of Advanced Manufacturing, 2017, 89: 997-1012.
Yang Y, Li M, Li K R. Comparison and analysis of main effect Elements of machining destruction for aluminum alloy and titanium alloy Aircraft monolithic component[J]. International Journal of Advanced Man-ufacturing, 2014,70: 1803-1811.
Wahid M A, Majeed T, Alam M N. Friction Stir Welding: A Sustainable Manufacturing Process[J]. Materials Today: Proceedings, 2021, 46: 6558-6563.
Bag S, Akinlabi E T. Eco-Friendly Aspects in Hybridization of Friction Stir Welding Technology for Dissimilar Metallic Materials[M]. Reference Module in Materials Science and Materials Engineering,2020.
Li Z W,Xu Z W, Ma L, et al. Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering.Part II: Cavitation erosion effect[J]. Ultrasonics Sonochemistry, 2019, 50: 278-288.
Chen Q, Ge H, Yang C, et al. Study on Pores in Ultrasonic-assisted TIG weld of aluminum Alloy[J]. Metals, 2017, 7(2): 53-57.
路全彬, 龙伟民, 杜全斌, 等. 表面处理对铝合金焊丝气孔敏感性的影响[J].电焊机,2016,46(4):55-58.
LU Q B, LONG W M, DU Q B, et al. Effect of surface treatment on gas porosity susceptibility of aluminum alloy welding wire[J]. Electric Welding Machine, 2016, 46(4): 55-58.
陈国宁,唐延川. 热处理温度对6082铝合金焊接接头性能的影响[J].兵器材料科学与工程, 2022, 45(3): 41-45.
CHEN G N, TANG Y C. Effect of heat treatment temperature on welding joint properties of 6082 aluminum alloy[J]. Ordnance Material Science and Engineering, 2022, 45(3): 41-45.
Statnikov E,Korolkov O,Muktepavel V. Oscillating system and tool for ultrasonic impact treatment:US7276824[P]. 2007.
Haagensen P,Maddox S. IIW recommendations on post weld improvement of steel and aluminium structures[R]. IIW Doc,XIII-1815-00, 2002.
Li Z, Zhu Y, Du X. Grain refining mechanism and fatigue properties of bogie welded cruciform joints tre-ated by ultrasonic impact[J]. Physics Procedia, 2013, 50: 410.
Castillo-Morales M, Berber-Solano T, Salas-Zamarripa A, et al. Effectiveness of the ultrasonic impact treatment in the retardation of the fatigue crack growth for 2024-T3 Al alloy components[J]. International Journal of Advanced Manufacturing,2020,108, 157-165.
Panin S, Pochivalov Y, Perevalova O, et al. Effect of ultrasonic impact treatment on mechanical properties of 3D-printed Ti-6Al-4V titanium alloy parts[C]//AIP Conference Proceedings, 2019, 2141: 040012.
Li M, Zhang Q, Han B, et al. Investigation on microstructure and properties of AlxCoCrFeMnNi high entropy alloys by ultrasonic impact treatment[J]. Journal of Alloys and Compounds, 2020, 816: 152626.
Statnikov E, Muktepavel V. Technology of ultrasound impact treatment as a means of improving the reliability and endurance of welded metal structures[J]. Welding International, 2003, 17: 741.
Berg-Pollack A,Voellmecke F,Sonsino C. Fatigue strength improvement by ultrasonic impact treatment of highly stressed spokes of cast aluminium wheels[J]. International Journal of Fatigue, 2011, 33: 513.
Chen F R, Liu C H. Improving the Properties of Laser-Welded Al-Zn-Mg-Cu Alloy Joints by Aging and Double-Sided Ultrasonic Impact Compound Treatment[J]. Materials, 2021, 14: 2742.
Kim N T, Lourdes S R. Microstructural Evolution of Severely Plastically Deformed Sensitized Aluminum 5456-H116 Treated by Ultrasonic Impact Treatment[J]. Advanced Engineering Materials, 2013, 15(11) : 1105-1110.
Qian S H, Zhang T M, Chen Y H. Effect of ultrasonic impact treatment on microstructure and corrosion behavior of friction stir welding joints of 2219 aluminum alloy[J]. Journal of Materials Research and Technology, 2022, 18:1631-1642.
Zasimchuk O E, Chausov M G, Mordyuk B M, et al. Features of strain hardening of heterogeneous aluminium alloys to enhance the fatigue durability[J]. Progress in Physics of Metals, 2021,22: 619-642.
Zhang Q, Li M Y, Han B, et al. Investigation on microstructures and properties of Al1.5CoCrFeMnNi high entropy alloy coating with and without ultrasonic impact treatment[J]. Journal of Alloys and Compounds, 2021, 884: 160989-1000.
Liu D D, Zhang L J, Du Y, et al. Assessment of atomic mobilities of Al and Cu in fcc AleCu alloys[J]. Calphad, 2009, 33(4): 761-768.
Huang B H, Wang L, Liu X P. Effect of ultrasonic impact treatment on corrosion fatigue performance of friction stir welded 2024-T4 aluminum alloy[J]. Corrosion Engineering, Science and Technology, 2022, 57(3): 243-253.
Wang J T, Chen J W, Zhang Y K. Influence of ultrasonic impact treatment on stress corrosion of 7075 aluminum alloy and its welded joints[J]. Engineering Failure Analysis, 2023, 144: 106908.
Fuller C B, Mahoneya M W, Calabrese M, et al. Evolution of microstructure and mechanical properties in naturally aged 7050 and 7075 Al friction stir welds[J]. Materials Science & Engineering A, 2010, 527(9): 2233-2240.
Wang Z, Lu H F, Cai J, et al. Improvement mechanism in stress corrosion resistance of the X70 pipeline steel in hydrogen sulfide solution by massive laser shock peening treatment[J]. Corrosion Science, 2022, 201: 110293.
Li L, Kim M, Lee S. Study on surface modification of aluminum 6061 by multiple ultrasonic impact treatments[J]. The International Journal of Advanced Ma-nufacturing Technology, 2018, 96: 1255-1264.
Lu J, Luo K, Zhang Y, et al. (2010) Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11): 3984-3994.
Farhat Z, Ding Y, Northwood D. Effect ofgrain size on friction and wear ofnanocrystalline aluminum[J]. Material Science and Engineering A, 1996, 206(2): 302-313.
Xiong Y, Shen Y S, He L Y, et al. Stress corrosion cracking behavior of LSP/MAO treated magnesium alloy during SSRT in a simulated body fluid[J]. Journal of Alloys and Compounds, 2020, 822: 153707.
Mcnaughtan D, Worsfold M, Robinson M J. Corrosion product force measurements in the study of exfoliation and stress corrosion cracking in high strength aluminium alloys[J]. Corrosion Science, 2003, 45(10): 2377-2389.
Chen F R, Liu C H. Improving the low-cycle fatigue properties of laser-welded Al-Zn-Mg-Cu alloy joints using double-sided ultrasonic impact treatment[J]. Materials Research Express, 2021, 8: 096509.
HE Y Z, WANG D P, WANG Y. Correction of buckling distortion by ultrasonic shot peening treatment for 5A06 aluminum alloy welded structure[J]. Transactions of Nonferrous Metals Society of China, 2016, 26: 1531-1537.
Hu S S, Guo C B, Wang D P. 3D Dynamic Finite Element Analysis of the Nonuniform Residual Stress in Ultrasonic Impact Treatment Process[J]. Journal of Materials Engineering and Performance, 2016, 25: 4004-4015.
Crawford B R, Loader C, Liu Q, et al. Can pitting corrosion change the location of fatigue failures in aircraft[J].International Journal of Fatigue,2014,61:304-314.
Barter S A, Molent L. Fatigue cracking from a corrosion pit in an aircraft bulkhead[J]. Engineering Failure Analysis, 2014, 39:155-163.
Liu X, Frankel G S. Effects of compressive stress on localized corrosion in AA2024-T3[J]. Corrosion Science, 2006, 48(10): 3309-3329.
He C, Yang K, Liu Y. Improvement of very high cycle fatigue properties in an AA7075 friction stir welded joint by ultrasonic peening treatment[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40: 460-468.
Zhang J, Li F, Zheng L, et al. Internal residual stress test of 2024-T351 aluminum alloy friction stir welding weldment[J]. Chinese Journal of Mechanical Engineering, 2013, 49(2): 28-34.
叶作彦.新型铝合金的腐蚀行为及表面改性的影响[D].陕西:西北工业大学,2017.
Ye Z Y. The corrosion behavior of new aluminum alloys and the effect of surface modification[D].Shanxi: Northwestern Polytechnical University, 2015.
Mcnaughtan D, Worsfold M, Robinson M J. Corrosion product force measurements in the study of exfoliation and stress corrosion cracking in high strength aluminium alloys[J]. Corrosion Science, 2003, 45(10): 2377-2389.
Qian S H, Zhang T M, Chen Y H, et al. Study on the correlation between microstructure characteristics and corrosion behavior of 2A12-T4 aluminum alloy under thermal strain[J]. Metals, 2021, 11(6): 924-936.
Sun Q Q, Hana Q Y, Xu R. Localized corrosion behaviour of AA7150 after ultrasonic shot peening: Corrosion depth vs. impact energy[J]. Corrosion Science, 2018, 130: 218-230.
Sun Q, Han Q, Liu X, et al. The effect of surface contamination on corrosion performance of ultrasonic shot peened 7150 Al alloy[J]. Surface & Coatings Technology, 2017, 328: 469-479.
Liu Y, Wang D P, Deng C Y. Influence of re-ultrasonic impact treatment on fatigue behaviors of S690QL welded joints[J]. International Journal of Fatigue, 2014, 66: 155-160.
Wang T, Wang D, Huo L. Discussion on fatigue design of welded joints enhanced by ultrasonic peening treatment (UPT)[J]. International Journal of Fatigue, 2009, 31: 644-650.
相关作者
相关机构