热场辅助电磁脉冲焊接Al/Cu异种金属接头组织性能研究
Study on Microstructure and Properties of Al/Cu Joints Fabricated by Heat-assisted Electromagnetic Pulse Welding
- 2023年53卷第8期 页码:16-21
DOI: 10.7512/j.issn.1001-2303.2023.08.03
扫 描 看 全 文
扫 描 看 全 文
陈玉华,吴鸿燕,周春培,等.热场辅助电磁脉冲焊接Al/Cu异种金属接头组织性能研究[J].电焊机,2023,53(8):16-21.
CHEN Yuhua, WU Hongyan, ZHOU Chunpei, et al.Study on Microstructure and Properties of Al/Cu Joints Fabricated by Heat-assisted Electromagnetic Pulse Welding[J].Electric Welding Machine, 2023, 53(8): 16-21.
采用热场辅助电磁脉冲焊接技术对Al/Cu异种金属进行焊接,对比分析了热场温度分别为室温、100 ℃和200 ℃条件下焊接接头的宏观形貌、界面组织及力学性能。结果表明:热场辅助电磁脉冲焊接技术能够实现Al/Cu异种金属的优质焊接;随着热场温度的增加,焊接接头有效结合区的尺寸增大。而波状界面形貌随着热场温度不同呈现不同的形态,室温下界面呈现正弦波和剪切波的混合波形,100 ℃下呈不规则的嵌入式波形形貌,200 ℃下的形貌与室温类似,但是界面反应层的厚度最大;三种温度下的界面反应区都检测到了Al-Cu化合物的存在。力学性能测试结果表明,随着热场温度的升高,焊接接头的力学性能逐渐提高。当加热温度为200 ℃时,焊接接头的抗拉剪力达到了4 076 N;所有试样都在界面处发生断裂,断裂区域存在断口形貌呈现“河流状”和韧窝结构混合形式,推断焊接接头的失效模式为韧脆混合断裂。在外场温度作用下,焊接接头的有效结合区增大,界面波形结构发生改变,进而有效地提升了接头的力学性能。
The Al/Cu dissimilar metals were welded using the external heating assisted magnetic pulse welding technique, and a comparative analysis was conducted on the macroscopic morphology, interface structure, and mechanical properties of the welded joints under different external heating temperatures, namely room temperature, 100 ℃, and 200 ℃. The results demonstrate that the external heating assisted electromagnetic pulse welding technique can achieve high-quality welding of Al/Cu dissimilar metals. With increasing external heating temperature, the size of the effective bonding area of the welded joint increases. The wavy interface morphology exhibits different forms depending on the external heating temperature: at room temperature, the interface shows a mixed waveform of sine waves and shear waves; at 100 ℃, an irregular embedded waveform morphology is formed; at 200 ℃, the morphology is similar to that at room temperature, but the thickness of the interface reaction layer is maximum. Al-Cu compounds were detected in the interface reaction zones under all three conditions. The mechanical property test results indicate that as the external heating temperature increases, the mechanical performance of the welded joint gradually improves. When the heating temperature is 200 ℃, the tensile-shear strength of the welded joint reaches 4 076 N. All specimens fractured at the joint interface, exhibiting a mixed fracture morphology of "river-like" and ductile dimples, suggesting a ductile-brittle mixed fracture as the failure mode of the welded joint. Under the influence of the external heating, the increase in the effective bonding area of the welded joint and the changes in the interface waveform structure effectively enhance the mechanical properties of the joint.
电磁脉冲焊接热场辅助Al/Cu异种金属微观组织力学性能
magnetic pulse weldingexternal heating-assistedAl/Cu dissimilar metalsmicrostructuremechanical properties
尹立孟, 张丽萍, 苏子龙, 等. 电磁制造技术在航空航天领域的应用[J]. 电焊机, 2020,50(9): 202-206.
YIN L M, ZHANG L P, SU Z L, et al. Application of electromagnetic manufacturing technology in aerospace[J]. Electric Welding Machine, 2020,50(9):202-206.
崔俊佳, 袁伟, 李光耀. 汽车车身异种金属板件磁脉冲焊接工艺研究[J].汽车工程,2017,39(1):113-120.
CUI J J, YUAN W, LI G Y. Research on magnetic pulse welding process of dissimilar metal sheets of automobile body[J].Automotive Engineering,2017,39(1):113-120.
王波,张洪涛,朱训明, 等.铝-铜层状复合材料热辅助超声波増材制造方法[J]. 机械工程学报, 2018,54(22):95-102.
WANG B, ZHANG H T, ZHU X M, et al. Heat-assisted ultrasonic additive manufacturing method of aluminum-copper layered composites[J]. Journal of Mechanical Engineering,2018,54(22): 95-102.
许辉, 封小松, 徐奎. 铝合金空间热辅助搅拌摩擦焊技术[J]. 载人航天,2016,22(3):308-312.
XU H, FENG X S, XU K. Space heat-assisted friction stir welding technology for aluminum alloys[J]. Man-ned Spaceflight, 2016,22(3):308-312.
Deng H B, Chen Y H, Jia Y L, et al.microstructure and mechanical properties of dissimilar NiTi/Ti6Al4V joints via back-heating assisted friction stir welding[J] Journal of Manufactering Processeses, 2021, 64(10):379-391.
曹亚明. 铝-铜电磁脉冲焊接技术及其连接机制研究[D].上海:上海工程技术学,2019.
CAO Y M. Research on Aluminum-Copper Electromagnetic Pulse Welding Technology and Its Connection Mechanism[D]. Shanghai: Shanghai University of Engineering Science, 2019.
王晨光. 1060Al/T2Cu磁脉冲板焊工艺及微观机理研究[D]. 湖南: 湖南大学, 2021.
WANG C G. Research on 1060Al/T2Cu Magnetic Pulse Plate Welding Process and Microscopic Mechanism[D]. Hunan: Hunan University, 2021.
王浦全. 异种金属电磁脉冲焊接接头性能及界面结合机制[D]. 重庆: 西南大学, 2021.
WANG P Q. Properties and interfacial bonding mechanism of electromagnetic pulse welding joints of dissimilar metals[D].Chongqing: Southwest University,2021.
Wang P Q, Chen D L, Ran Y, et al. Electromagnetic pulse welding of Al/Cu dissimilar materials: Microstructure and tensile properties[J]. Materials Science and Engineering:A, 2020, 792: 139842.
苏德智, 王义峰, 冉洋, 等. 铝-铜平板磁脉冲焊接工艺研究[J]. 热加工工艺, 2018, 47(23): 229-233.
SU D Z, WANG Y F, RAN Y, et al. Research on magnetic pulse welding process of aluminum-copper plate[J]. Hot Working Technology,2018,47(23): 229-233.
谢吉林, 彭程, 谢菀新, 等. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报,2023,37(5):175-179.
XIE J L, PENG C, XIE W X, et al. Microstructure and properties of Al/Mg dissimilar alloymagnetic pulse welded joints[J]. Materials Reports,2023,37(5):175-179.
朱聪聪, 蒙奕帆, 柳泉潇潇, 等. Al/Mg异种金属板材电磁脉冲焊接工艺及力学性能研究[J]. 精密成形工程, 2021, 13(4): 45-51.
ZHU C C, MENG Y F, LIUQUAN X X, et al. Research on Electromagnetic Pulse Welding Process and Mechanical Properties of Al/Mg Dissimilar Metal Sheets[J]. Journal of Net shape Forming Engineering, 2021, 13(4): 45-51.
Kore S D, Imbert J, Worswick M J, et al. Electromagnetic impact welding of Mg to Al sheets[J]. Science and Technology of Welding and Joining, 2009, 14(6):549-553.
相关作者
相关机构