镍-不锈钢复合板激光深熔焊工艺研究
Study on Welding Process of Deep Penetration Laser Welding of Ni-clad Stainless Steel Plate
- 2023年53卷第7期 页码:46-51
DOI: 10.7512/j.issn.1001-2303.2023.07.07
扫 描 看 全 文
扫 描 看 全 文
严益,岳民杰,玉昆,等.镍-不锈钢复合板激光深熔焊工艺研究[J].电焊机,2023,53(7):46-51.
YAN Yi, YUE Minjie, YU Kun, et al.Study on Welding Process of Deep Penetration Laser Welding of Ni-clad Stainless Steel Plate[J].Electric Welding Machine, 2023, 53(7): 46-51.
采用30 kW超高功率光纤激光器对总厚度20 mm的镍-不锈钢复合板开展激光深熔焊试验,分析了激光功率、焊接速度和离焦量对焊缝表面成形的影响。结果表明,在离焦量-8 mm,焊接速度2.1 m/min保持不变的情况下,随着激光功率的增加,焊缝均得以实现单面焊背面成形,但存在表面下塌、飞溅和咬边缺陷;当激光功率为26 kW时,在焊接过程稳定阶段(除起弧和收弧位置)获得了背面成形均匀、连续、根部熔透良好的焊缝;当激光功率为25 kW、离焦量为-8 mm时,焊接速度范围在1.8~2.4 m/min时,焊缝表面出现塌陷及底部驼峰缺陷;当焊接速度为2.4 m/min时,焊缝部分位置未焊透,且焊缝稳定性差;随着离焦量从-3 mm到-10 mm变化,焊缝均被熔透,但存在飞溅、咬边和表面下塌缺陷。本研究为后续进一步优化激光深熔焊工艺提供了试验依据。
Deep penetration laser welding experiments were conducted on Ni-clad stainless steel plates with a total thickness of 20 mm using a 30 kW ultra-high power fiber laser. And the influences of laser power, welding speed and defocus on surface appearances of welds were investigated. The results showed that under the conditions of welding speed of 2.1 m/min, defocusing amount of -8 mm, with the increase of laser power, the welds of side welding both sides formation were obtained, but with spatter, undercut, surface undercut and root hump defects. At a laser power of 26 kW, the weld with uniform forming and continuous back, good root penetration was achieved in the stabilization stage of the welding process (except the arc generating and quenching positions). When the laser power was 25 kW, the defocusing amount was -8 mm and the welding speed range was from 1.8 m/min to 2.4 m/min, the defects of surface undercut and root hump appeared at the top and bottom surfaces respectively. At a speed of 2.4 m/min, the partial penetration welds were obtained. With the change of defocusing distance from -3 mm to -10 mm, the full penetration welds were obtained with spatter, undercut and surface undercut defects. The research in this paper provided an experimental basis for further optimization of deep penetration laser welding process.
超高功率激光镍-不锈钢复合板激光深熔焊厚板焊缝成形
Ni-stainless steel clad platedeep penetration laser weldingthick plateweld formation
Lei T, Jiang L, Ye X X, et al. Effect of W/Mo ratio on the as-cast microstructure of Nb-modified Hastelloy N alloys[J]. Materials Characterization, 2021, 175: 111075.
Chen S, Zhao L, Wang J, et al. Microstructure evolution and mechanical properties of simulated HAZ in a Ni-17Mo-7Cr superalloy: effects of the welding thermal cycles[J]. Journal of Materials Science, 2020, 55(27): 13372-13388.
Liu T, Dong J S, Wang L, et al. Effect of long-term thermal exposure on microstructure and stress rupture properties of GH3535 super alloy[J]. Journal of Materials Science & Technology, 2015, 31(3): 269-279.
WANG Y, Liu H, Yu G, et al. Electrochemical study of the corrosion of a Ni-based alloy GH3535 in molten (Li,Na,K)F at 700°C[J]. Journal of Fluorine Chemistry, 2015, 178: 14-22.
周兴泰, 李志军, 陆燕玲, 等. 钍基熔盐堆材料发展战略[J]. 中国工程科学, 2019, 21(01): 29.
ZHOU X T, LI Z J, LU Y L, et al. The development strategy of thorium-based molten salt reactor materials [J]. Engineering Science in China, 2019, 21(01): 29.
美国机械工程师协会(ASME), 美国国家标准协会(ANSI). 锅炉及压力容器规范[S]. New York, 2013.
王剑彬, 刘志利, 朱红梅. 哈氏合金表面脉冲电镀镍层的制备及其耐蚀性能[J]. 南华大学学报, 2018, 32(03): 71.
WANG J B, LIU Z L, ZHU H M. Preparation of pulse electroplating nickel coating on hastelloy alloy surface and its corrosion resistance[J]. Journal of Nanhua University, 2018, 32(03): 71.
刘艳红, 杨超, 陆燕玲, 等. 镍基合金耐氟盐腐蚀防护涂层的性能研究[J]. 稀有金属, 2015,39(10): 865.
LIU Y H, YANG C, LU Y L, et al. Study on the performance of nickel-based alloy fluoride salt corrosion protection coating[J]. Rare Metals,2015,39(10): 865.
陈鹏, 刘一搏, 王亚峰, 等. 核电 CV 厚板窄间隙摆动自动焊接工艺参数研究[J]. 电焊机, 2020, 50(3): 11-17.
CHEN P, LIU Y B, WANG Y F, et al. Study on welding process parameters of narrow swing automatic welding of CV thick plate in nuclear power plant[J]. Electric Welding Machine, 2020, 50(03): 11-17.
Cai D, Luo Z, Han L, et al. Porosity and joint property of laser-MIG hybrid welding joints for 304 stainless steel[J]. Journal of Laser Applications, 2020, 32(2): 022056.
Wahba M,Mizutani M,Katayama S. Single pass hyb-rid laser-arc welding of 25 mm thick square groove butt joints[J]. Materials & Design, 2016(97): 1-6.
Katayama S, Kawahito Y. Elucidation of phenomena in high-power fiber laser welding and development of prevention procedures of welding defects[C]//Fiber lasers VI: technology, systems, and applications. SPIE, 2009, 7195: 404-412.
Kaplan A F H, Westin E M, Wiklund G, et al. Imaging in cooperation with modeling of selected defect mechanisms during fiber laser welding of stainless steel[C]//International Congress on Applications of Lasers & Electro-optics. Laser Institute of America, 2008, 2008(1): 1701.
Katayama S, Kawahito Y, Mizutani M. Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects[J]. Physics procedia, 2010, 5: 9-17.
Sokolov M, Salminen A, Kuznetsov M, et al. Laser welding and weld hardness analysis of thick section S355 structural steel[J]. Materials & Design, 2011, 32(10): 5127-5131.
Grupp M, Klinker K, Cattaneo S. Welding of high thicknesses using a fibre optic laser up to 30 kW[J]. Welding International, 2013, 27(2): 109- 112.
信纪军, 方超, 宋云涛,等.20 mm厚316LN不锈钢板的超高功率光纤激光自熔焊[J]. 中国激光, 2018, 45(05): 94-101.
XIN J J, FANG C, SONG Y T, et al. Autogenous laser welding of 20 mm-thick 316LN stainless steel plate by ultra high power fiber lasers[J]. Chinese Journal of Lasers, 2018, 45(05): 94-101.
Zhang X, Ashida E, Katayama S, et al. Deep penetration welding of thick section steels with 10 kW fiber laser[J]. Quarterly Journal of the Japan Welding Society, 2009, 27(2): 64-68.
Avilov V V, Gumenyuk A, Lammers M, et al. PA position full penetration high power laser beam welding of up to 30 mm thick AlMg3 plates using electromagnetic weld pool support[J]. Science and technology of Welding and Joining, 2012, 17(2): 128-133.
Kawahito Y, Mizutani M, Katayama S. High quality welding of stainless steel with 10 kW high power fibre laser[J]. Science and Technology of Welding and Joining, 2009, 14(4): 288-294.
Katayama S, Mizutani M, Kawahito Y, et al. Fundamental research of 100 kW fiber laser welding technology[C]//Proceeding of Lasers in Manufacturing Conference, Munich, Germany, 2015.
编辑部网址:http://www.71dhj.comhttp://www.71dhj.com
相关文章
相关作者
相关机构