SLM成形金属薄壁件表面缺陷形成机理研究
Study on Formation Mechanism of Surface Defects of Metal Thin-wall Parts by SLM
- 2023年53卷第6期 页码:15-22
DOI: 10.7512/j.issn.1001-2303.2023.06.03
扫 描 看 全 文
扫 描 看 全 文
左寒松,徐向辉,金文中,等.SLM成形金属薄壁件表面缺陷形成机理研究[J].电焊机,2023,53(6):15-22.
ZUO Hansong, XU Xianghui, JIN Wenzhong, et al.Study on Formation Mechanism of Surface Defects of Metal Thin-wall Parts by SLM[J].Electric Welding Machine, 2023, 53(6): 15-22.
选区激光熔化技术(SLM)被认为是最具潜力的金属增材制造技术之一。对SLM成形316L不锈钢薄壁件侧壁表面形成机理与优化策略进行了研究。实验结果发现:随着体能量密度的逐渐提升,SLM成形金属薄壁件侧壁粘粉、凹陷(孔隙)等表面缺陷及壁厚精度均呈现分段性变化,即熔池烧结存在固相烧结、稳态传导和非稳定匙孔三种模式。不同体能量密度条件下的熔池热、动力学行为耦合作用改变,使得各种表面缺陷的分布、形貌乃至形成过程均不同。重点分析了叠层褶皱、道内震荡褶皱及飞溅沉积褶皱三类表面褶皱形貌的形成机理。上述研究为提高SLM成形复杂薄壁结构表面质量提供了实验与理论借鉴。
Selective laser sintering (SLM) was considered as one of the most potential metal additive manufacturing technologies. The formation and improvement of the side surface quality of 316L thin-walled parts formed by SLM was studied in this paper. The results show that the surface defects including sticking powders, depression (pore), and the wall thickness deviation of SLMed metal thin-walled parts have the similar piecewise change trends with the increase of bulk energy density. It could be inferred that there are three sintering modes of molten pool including solid-state sintering, steady-state conduction and unstable keyhole. Under different bulk energy density, the different coupling effects of the thermal and dynamic behavior of molten pool makes the distribution, morphology and formation mechanism of various surface defects changed. And then the formation mechanism of three kinds of surface ripples was also analyzed innovatively. The above research could provide some experimental and theoretical experience for improving the surface quality of complex thin-walled structures formed by SLM.
选择性激光熔化技术表面缺陷熔池行为金属薄壁件
SLMsurface defectsmolten poolmetal thin-wall parts
罗子艺. 薄壁零件选区激光熔化制造工艺及影响因素研究[D]. 广东:华南理工大学,2011.
LUO Z Y. Study on Process and Effective Factors ofThin-wall Parts Manufactured by Selective Laser Melting[D].Guangdong: South China University of Technology,2011.
赵鑫, 虞雨洭, 吴圣川, 等. 新型飞机用铝合金薄壁件的选区激光熔化成形研究[J]. 电焊机, 2021, 51(3):1-7.
ZHAO X, YU Y K, WU S C, et al. Selective Laser Melted Aluminum Alloy Thin-walled Parts of New Generation aircraft structures[J]. Electric Welding Machine, 2021, 51(3):1-7.
YIN Y, TAN Q, BERMINGHAM M,et al. Laser additive manufacturing of steels[J]. International Materials Reviews, 2021(10): 1-87.
朱小刚, 孙靖, 王联凤, 等. 激光选区熔化成形铝合金的组织、性能与倾斜面成形质量[J]. 机械工程材料, 2017, 41(2): 77-80.
ZHU X G,SUN J,WANG L F,et al. Microstructure,Properties and Inclined Plane Forming Quality of Aluminum Alloy by Selective Laser Melting[J]. Materials for Mechanical Engineering, 2017, 41(2): 77-80.
LEE A C, HUANG R Y, NGUYEN T D,et al. Laser Powder Bed Fusion of Multilayer Thin-walled Structures Based on Data-driven Model[J]. Journal of Laser Micro Nanoengineering, 2020, 15(1): 38-44.
KOEHLY C, NEUBERGER H, BUEHLER L. Fabrication of thin-walled fusion blanket components like flow channel inserts by selective laser melting[J]. Fusion Engineering and Design, 2019, 143: 171-179.
STRANO G, HAO L, EVERSON R M, et al. Surface roughness analysis, modelling and prediction in selective laser melting[J]. Journal of Materials Processing Technology, 2013, 213(4): 589-597.
孙靖,吴士明,陈艳,等. 激光选区熔化成形316L中孔洞类型及产生机理[J]. 电焊机,2021,51(8):123-127.
SUN J, WU S M, CHEN Y, et al. The Type and For mati on Mechanism of Pores in Selective Laser Melting Processed 316L SS[J]. Electric Welding Machine,2021, 51(8):123-127.
TAN Q, LIU Y, FAN Z,et al. Effect of processing parameters on the densification of an additively manufactured 2024 Al alloy[J]. Journal of Materials Science & Technology, 2020, 58: 34-45.
LIU W, CHEN C, SHUAI S,et al. Study of pore defect and mechanical properties in selective laser melted Ti6Al4V alloy based on X-ray computed tomography[J]. Materials Science & Engineering A:Structural Materials:Properties,Microstructure and Processing,2020,797: 139981.
韩国明. 现代高效焊接技术[M]. 机械工业出版社, 2017: 178-179.
YANG J, HAN J, YU H,et al. Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6A1-4V alloy[J]. Materials & Design, 2016, 110: 558-570.
孟宣宣. 光纤激光焊接熔池和小孔的高速摄像与分析[J]. 电焊机, 2010, 40(11): 78-81.
MENG X X. High-speed photograph and the analysis of the welding pool and keyhole in fiber laser welding[J]. Electric Welding Machine, 2010, 40(11): 78-81.
ANTHONY T R, CLINE H E. Surface rippling induced by surface-tension gradients during laser surface melting and alloying[J]. Journal of Applied Physics, 1977, 48(9): 3888-3894.
宦君. 激光选区熔化设备研制及钛合金成形基础工艺研究[D]. 江苏:南京航空航天大学, 2018: 67-68.
HUAN J. Development of Selective Laser Melting Equipment and Research On Processing Technology of Titanium Alloy[D].Jiangsu: Nanjing University of Aeronautics and Astronautics, 2018: 67-68.
GUO Q, ZHAO C, QU M,et al. In-situ full-field mapping of melt flow dynamics in laser metal additive manufacturing[J]. Additive Manufacturing, 2020, 31(1): 100939.
ZUO H, LI H, QI L,et al. Effect of non-isothermal deposition on surface morphology and microstructure of uniform molten aluminum alloy droplets applied to three-dimensional printing[J]. Applied Physics A, 2015, 118(1): 327-335.
相关文章
相关作者
相关机构