60 kV/30 kW电子束熔丝增材高压电源研制
Development of 60 kV/30 kW Electron Beam Fuse Additive Manufacturing High Voltage Power Supply
- 2023年53卷第6期 页码:8-14
DOI: 10.7512/j.issn.1001-2303.2023.06.02
扫 描 看 全 文
扫 描 看 全 文
杨波,王壮,许海鹰,等.60 kV/30 kW电子束熔丝增材高压电源研制[J].电焊机,2023,53(6):8-14.
YANG Bo, WANG Zhuang, XU Haiying, et al.Development of 60 kV/30 kW Electron Beam Fuse Additive Manufacturing High Voltage Power Supply[J].Electric Welding Machine, 2023, 53(6): 8-14.
针对电子束熔丝增材制造工艺对设备长期稳定性与可靠性的需求,以电压双闭环的方式设计加速电源控制电路,实现加速电压在电网电压及负载特性发生变动时保持长期稳定的输出;以异步开关及均流控制的方式实现加速电源3路并联工作,降低30 kW输出功率状态下电路产生的EMI(Electromagnetic Interference),实现加速电源在长时间大功率状态下可靠工作,并在此基础上完成了对灯丝电源、偏压电源以及轰击电源的设计,实现了对电子束熔丝增材高压电源的研制。对所研制的高压电源进行特性验证,其可在60 kV输出电压及30 kW输出功率状态下实现20 h连续稳定工作,满足电子束熔丝增材制造工艺的要求。
According to the requirements of the electron beam wire melting material increase manufacturing process on the long-term stability and reliability of the equipment, the control circuit of the acceleration power supply is designed in the form of voltage double closed-loop to realize the long-term stable output of the acceleration voltage when the grid voltage and load characteristics change; By means of asynchronous switching on/off and current sharing control, the three-way parallel operation of the accelerating power supply is realized, the EMI generated by the circuit under the output power of 30 kW is reduced, and the reliable operation of the accelerating power supply under the high-power state for a long time is realized. On this basis, the design of the filament power supply, the bias power supply and the bombardment power supply are completed, and the development of the high-voltage power supply for electron beam wire melting material increase is realized. The characteristics of the developed high-voltage power supply are verified. It can work stably for 20 hours under the condition of 60 kV output voltage and 30 kW output power, which meet the requirements of electron beam wire melting material increase manufacturing process.
电子束熔丝增材电压双闭环异步开关均流控制
electron beamfuse additive manufacturingvoltage double closed-loopasynchronous switching on/offcurrent sharing control
巩水利,锁红波,李怀学. 金属增材制造技术在航空领域的发展与应用[J].航天制造技术,2013(13):66-71.
GONG S L,SUO H B,LI H X. Development and Application of Metal Additive Manufacturing Technology[J].Aeronautical Manufacturing Technology,2013(13):66-71.
朱忠良, 赵凯, 郭立杰, 等. 大型金属构件增材制造技术在航空航天制造中的应用及其发展趋势[J]. 电焊机, 2020, 50(1):1-14.
ZHU Z L, ZHAO K, GUO L J, et al. Application and development trend of additive manufacturing technology of large-scale metal component in aerospace manufacturing[J].Electric Welding Machine,2020,50(1):1-14.
张春杰,齐超琪,赵凯,等. 大型航空航天铝合金承力构件增材制造技术[J]. 电焊机,2021,51(8):39-54.
ZHANG C J, QI C Q, ZHAO K, et al. Additive manufacturing technology for large load-carrying component of aluminum alloy in aeronautics and astronautics[J]. Electric Welding Machine, 2021, 51(8):39-54.
熊进辉,李士凯,耿永亮,等.电子束熔丝沉积快速制造技术研究现状[J].电焊机, 2016,46(02),7-11.
XIONG J H , LI S K, GENG Y L, et al. Research Status of Rapid Manufacturing Technology for Electron Beam Fuse Deposition[J]. Electric Welding Machine, 2016,46(02): 7-11.
左世全.我国3D打印发展战略与对策研究[J].世界制造技术与装备市场,2016(05):44-50.
ZUO S Q. Research on the Development Strategy and Countermeasures of 3D Printing in China[J]. World Manufacturing Technology and Equipment Market, 2016(05): 44-50.
GONG S L, LIU J R, YANG G, et al. Electron beam wire deposition technology and its application[M]. National defense industry press, 2022.
祁萌,李晓红,胡晓睿,等. 增材制造技术在国外国防领域的发展现状与趋势[J]. 国防制造技术, 2013(05):12-16.
QI M, LiI X H, HU X R, et al. The Development Status and Trends of Additive Manufacturing Technology in the Foreign Defense Field[J]. Defense Manufacturing Technology, 2013(05): 12-16.
李绍伟,郜庆伟,赵健,等. 电子束熔丝增材制造研究进展及展望[J]. 中国材料进展,2021,40(02):130-138.
LI S W, GAO Q W, ZHAO J, et al. Research Progress and Prospects of Electron Beam Fuse Additive Manufacturing[J]. Progress in Materials in China, 2021,40(02): 130-138.
陈国庆,树西,张秉刚,等.国内外电子束熔丝沉积增材制造技术发展现状[J].焊接学报,2019,39(8):123-128.
CHEN G Q, SHU X, ZHANG B G, et al. Current development situation of the technology of electron beam fuse deposition additive manufacturing in China and abroad[J]. Journal of Welding,2019,39(8):123-128.
任慧娇,周冠男,从保强,等. 增材制造技术在航空航天金属构件领域的发展及应用[J]. 航空制造技术,2020,63(10):72-77.
REN H J, ZHOU G N, CONG B Q, et al. The development and application of additive manufacturing technology in the field of aerospace metal components[J]. Aerospace Manufacturing Technology, 2020,63(10): 72-77.
张国栋,许乔郅,郑涛,等.航空装备电子束增材制造技术发展及路线图[J].航空材料学报,2023,43(1):28-38.
ZHANG G D, XU Q Z, ZHENG T, et al. Development and roadmap of electron beam additive manufacturing technology for aviation equipment[J]. Journal of Aerospace Materials, 2023,43(1): 28-38.
吴凡,林博超,陈玮,等. 电子束增材制造设备及应用进展[J].真空,2022,59(01):79-85.
WU F, LIN B C, CHEN W, et al. Progress in Electron Beam Additive Manufacturing Equipment and Applications [J]. Vacuum, 2022,59(01): 79-85.
桑兴华,许海鹰,杨波,等.环形束斑冷阴极电子枪的研制及其束流品质优化[J].电焊机,2021,51(8):153-159.
SANG X H, XU H Y, YANG B, et al. Development and beam quality optimization of annular beam spot cold cathode electron gun[J]. 2021, 51(8):153-159.
相关作者
相关机构