Q1400超高强钢激光-MAG复合焊抗裂性研究
Study on Crack Resistance of Q1400 Ultra-high Strength Steel by Hybrid Laser-MAG Welding
- 2023年53卷第4期 页码:90-96
DOI: 10.7512/j.issn.1001-2303.2023.04.10
扫 描 看 全 文
扫 描 看 全 文
牟梓豪,徐锴,刘振伟,等.Q1400超高强钢激光-MAG复合焊抗裂性研究[J].电焊机,2023,53(4):90-96.
MU Zihao, XU Kai, LIU Zhenwei, et al.Study on Crack Resistance of Q1400 Ultra-high Strength Steel by Hybrid Laser-MAG Welding[J].Electric Welding Machine, 2023, 53(4): 90-96.
针对超高强钢在焊接过程中容易产生裂纹等问题,采用激光-电弧复合焊对20 mm厚Q1400E超高强钢进行了抗裂性研究。通过斜Y坡口裂纹敏感性试验发现,在焊缝中心偏上位置易产生焊接裂纹。经过金相组织检查、表面形貌检查、EDS能谱分析等检测手段,确定此裂纹为凝固裂纹。裂纹产生原因:(1)液态金属补缩不足导致缩松;(2)C、S、P等有害元素发生微观偏析;(3)母材淬硬性大,坡口尖角处的拘束应力大。利用激光复合焊接方法深熔焊接特点及焊前预热措施进一步降低了焊接拘束应力,结果表明,采用激光功率8 500 W,焊接电流250 A,焊接电压24 V,焊接速度1.2 m/min,预热200 ℃的工艺参数可以有效解决20 mm厚Q1400超高强钢的焊接裂纹问题。
The crack resistance of 20 mm thick Q1400E ultra-high strength steel is studied using a laser arc hybrid welding method. Through the crack sensitivity examination of the inclined Y-groove, it is found that welding cracks are easy to occur at the upper position of the weld center. Through metallographic examination, surface morphology examination, and EDS analysis, it is determined that the crack is a solidification crack. Causes of cracks: (1) insufficient shrinkage of liquid metal leading to shrinkage porosity; (2) micro segregation of harmful elements such as C, S and P occurs; (3) the base metal possesses a high hardenability and high binding strain at the pointed corners of the groove. The characteristics of deep penetration welding using laser hybrid welding and pre welding preheating measures are used to further reduce the welding restriction stress. The results reveal that when using welding parameters such as laser power 8 500 W, welding current 250 A, welding voltage 24 V, welding speed 1.2 m/min, and preheating 200 ℃, the welding crack problem of 20 mm thick Q1400 ultra high strength steel can be efficiently solved.
超高强钢裂纹敏感性激光-MAG复合焊斜Y坡口预热温度凝固缩松
ultra-high strength steelscrack sensetivityhybrid laser-arc weldinginclined Y-groovepreheating temperaturesolidification shrinkage porosity
汪贺模,罗登,高擎, 等. 1100 MPa级别超高强度工程机械用钢的开发[J].南方金属,2019(06):1-4,54.
WANG H M, LUO D, GAO Q, et al. Development of 1100 MPa grade ultra high strength steel for construction machinery[J]. Southern Metals,2019(06):1-4,54.
张慧萍,王崇勋,杜煦.飞机起落架用300M超高强钢发展及研究现状[J].哈尔滨理工大学学报,2011,16(06):73-76.
ZHANG H P, WANG C X, DU X. Development and Research Status of 300M Ultra High Strength Steel for Aircraft Landing Gear[J]. Journal of Harbin University of Technology, 2011,16(06):73-76.
孟传峰. 工程机械用先进高强钢组织性能调控及关键生产工艺研究[D].山西:太原理工大学,2018.
MENG C F. Investigation on Microstructure and Property Control of Advanced High Stength Steel for Engineering Machinery and Development of The Key Production Technology[D].Shanxi:Taiyuan University of Technology, 2018.
Schmitt J H, Iung T. New developments of advanced high-strength steels for automotive applications[J]. Comptes Rendus Physique, 2018, 19(8): 641-656.
周成,叶其斌,田勇, 等.超高强度结构钢的研究及发展[J].材料热处理学报,2021,42(01):14-23.
ZHOU C, YE Q B, TIAN Y, et al. Research and Development of Ultra High Strength Structural Steel[J]. Transaction of Meterial and Heat Treatment, 2021,42(01):14-23.
Rhode M, Steger J, Boellinghaus T, et al. Hydrogen degradation effects on mechanical properties in T24 weld microstructures[J]. Welding in the World, 2016, 60(2): 201-216.
Zimmer P, Seeger D, Böllinghaus T. Hydrogen permeation and related material properties of high strength steels[J]. 2005.
Villalobos J C, Del-Pozo A, Mayen J, et al. Hydrogen embrittlement suscetibility on X-120 microalloyed steel as function of tempering temperature[J]. International Journal of Hydrogen Energy, 2020, 45(15): 9137-9148.
曹瑜琦,倪川皓,易伟, 等.Q890D钢激光-电弧复合焊冷裂纹敏感性[J]. 机械制造文摘(焊接分册),2022, 298(02): 1-6.
CAO Y Q, NI C H, YI W, et al. Cold crack sensitivity of laser arc hybrid welding of Q890D steel[J]. Welding Digest of Machinery Manufacturing, 2022, 298(02):1-6.
周之金. 拘束应力对低相变焊缝金属马氏体转变行为和显微组织的影响[D]. 天津:天津大学,2020.
ZHOU Z J. Effect of Restraint Stress on Martensite Transformation Behavior and Microstructure of Low Phase Transformation Weld Metal[D]. Tianjin:Tianjin University, 2020.
Abu-Aesh M, Taha M, El-Sabbagh A S, et al. Hot‐cracking susceptibility of fully austenitic stainless steel using pulsed‐current gas tungsten arc‐welding process[J]. Engineering Reports, 2021, 3(3):12308.
Chen Z, Xiong Y, Qiu H, et al. Stress intensity factor-based prediction of solidification crack growth during welding of high strength steel[J]. Journal of Materials Processing Technology, 2018, 252: 270-278.
陈根余,张焱,雷燃. 42CrMo钢活塞激光-MAG复合焊接热裂纹试验[J]. 焊接学报,2019,40(07):61-66,163-164.
CHEN G Y, ZHANG Y, LEI R. Hot Crack Test of Laser MAG Composite Welding for 42CrMo Steel Piston[J]. Transactions of the China Welding Institution,2019,40(07):61-66,163-164.
曹浩. 大厚度高强钢板窄间隙激光摆动填丝焊接工艺研究[D].北京:机械科学研究总院,2019.
CAO H. Narrow Gap Scanned Laser Welding with Filling Wire for Thick High-Strength Steel[D]. Beijing:China Academy of Machinery Science & Technology, 2019.
李立英. ASTM4130钢焊接热影响区组织与性能研究[D].山东:中国石油大学(华东),2011.
LI L Y. Study on Microstructure and Properties in Heat-Affected Zone of ASTM4130 Steel[D]. Shandong:China University of Petroleum, 2011.
Arai Y, Emi T, Fredriksson H, et al. In-Situ Observed Dynamics of Peritectic Solidification and δ/γ Transformation of Fe-3 to 5 At. Pct Ni Alloys[J]. Metallurgical and Materials Transactions, 2005, 36(11): 3065-3074.
吴松林,张成杰,龙兴平. 斜y型坡口焊接裂纹试验的拘束度有限元计算分析[J]. 材料开发与应用, 2011,26(01):1-3.
WU S L, ZHANG C J, LONG X P. Finite element calculation and analysis of restraint degree for welding crack test with oblique Y groove[J]. Development and Application of Materials, 2011,26(01):1-3.
编辑部网址:http://www.71dhj.comhttp://www.71dhj.com
相关作者
相关机构