搅拌摩擦焊界面摩擦及材料流动行为仿真
Modeling and Simulation of Interface Friction and Material Flow Behavior during Friction Stir Welding
- 2023年53卷第3期 页码:15-21
DOI: 10.7512/j.issn.1001-2303.2023.03.02
扫 描 看 全 文
扫 描 看 全 文
乔俊楠,史清宇,陈树君,等.搅拌摩擦焊界面摩擦及材料流动行为仿真[J].电焊机,2023,53(3):15-21.
QIAO Junnan, SHI Qingyu, CHEN Shujun, et al.Modeling and Simulation of Interface Friction and Material Flow Behavior during Friction Stir Welding[J].Electric Welding Machine, 2023, 53(3): 15-21.
采用计算流体力学(CFD)方法研究了6061铝合金搅拌摩擦焊过程中的界面摩擦行为与材料流动行为。通过在搅拌头-工件界面采用剪切力边界条件,实现了焊接过程中界面摩擦与材料流动的完全耦合分析。结果表明,搅拌头与工件间的界面摩擦行为呈现显著的非均匀特征:轴肩芯部及环形槽内呈近似黏着摩擦,轴肩外缘区域呈滑动摩擦;搅拌针侧面呈现不同程度的滑动状态,界面滑动比例随其到轴肩的距离增加而增加。摩擦界面附近存在厚度为0.66~4 mm的低粘度区。在低粘度区,工件上部材料流动速度可达0.17 m/s,应变率可达85.7 s,-1,;在工件下部材料流动速度可达0.017 m/s,应变速率可达11.7 s,-1,。从材料流经低粘度区的流动路径来看,搅拌摩擦焊过程材料流动呈现多圈旋转及直通两种模式。仿真得到的温度、低粘度区形状及标记材料沉积位置均得到了实验结果的印证。
In this paper, the interface friction and material flow behavior of 6061 aluminum alloy during friction stir welding are studied by computational fluid dynamics. By adopting the shear stress boundary condition at the interface between the tool and the workpiece, the analysis of interface friction and material flow is realized in a fully coupled manner. The results show that the interfacial friction behavior between the tool and the workpiece presents significant non-uniform characteristics: approximate sticking friction ispresent atthe annulargroove of the shoulder, and slidingfriction ispresent at the periphery of the shoulder. The interfacial sliding in different degrees is present at the pin side, and the sliding index of the interface increases with the distance from the shoulder. There is a low viscosity zone with a thickness of 0.66~4 mm near the friction interface. In the low viscosity region, the material flow velocity on the upper portion of the workpiece reaches 0.17 m/s, and the strain rate reaches 85.7 s,-1,. On the lower portion of the workpiece, the material flow velocity reaches 0.017 m/s and the strain rate reaches11.7 s,-1,. Regarding the material flow path through the low viscosity zone, the material flow presents two modes: multi-circle rotation and straight-through flow. The simulated temperature, geometry of low viscosity zone and deposition position of marker materials are validated by the experimental results.
计算流体力学界面摩擦行为材料流动低粘度区
computational fluid dynamicsinterfacial friction behaviormaterial flowlow viscosity region
侯振国, 钮旭晶, 李充, 等. 搅拌摩擦焊技术在高速列车制造中的应用[J]. 电焊机, 2018, 48(3):32-36.
HOU Z G, NIU X J, LI C, et al. Application of friction stir welding technology for the high-speed train manufacturing[J].Electric Welding Machine, 2018, 48(3):32-36.
李玉龙, 袁天保, 陈玉波, 等. 铝锂合金搅拌摩擦焊接技术的研究现状及其发展方向[J]. 电焊机, 2019, 49(2):6-13.
LI Y L, YUAN T B, CHEN Y B, et al. Research status and development direction of friction stir welding technology for Al-Li alloy[J]. Electric Welding Machine, 2019, 49(2):6-13.
薛鹏, 张星星, 吴利辉, 等. 搅拌摩擦焊接与加工研究进展[J]. 金属学报, 2016, 52(10): 1222-1238.
XUE P, ZHANG X X, WU L H,et al. Research progress on friction stir welding and processing[J]. Acta Metall Sin, 2016, 52(10): 1222-1238.
褚强,李文亚,杨夏炜.搅拌摩擦点焊金属流动研究现状[J]. 精密成形工程,2015,7(5):7-12,24.
CHU Q,LI W Y,YANG X W. Research Status of Material Flow of Friction Stir Spot Welding[J]. Journal of Netshape Forming Engineering,2015,7(5):7-12,24.
Chen G Q, Li H, Wang G Q,et al.Effects of pin thread on the in-process material flow behavior during friction stir welding: A computational fluid dynamics study[J].International Journal of Machine Tools and Manufacture, 2018,124:12-21.
武传松, 宿浩, 石磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟[J]. 金属学报, 2018, 54(2): 265-277.
WU C S, SU H, SHI L. Numerical Simulation of Heat Generation, Heat Transfer and Material Flow in Friction Stir Welding[J]. Acta Metallurgica Sinica, 2018, 54(2): 265-277.
Colligan K J, Mishra R S. A conceptual model for the process variables related to heat generation in friction stir welding of aluminum[J].Scripta Materialia,2008,58:327-331.
Colegrove P A, Shercliff H R. 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile[J]. Journal of Materials Processing Technology, 2005,169: 320-327.
Yu Z, Zhang W, Choo H, Feng Z. Transient heat and material flow modeling of friction stir processing of magnesium alloy using threaded tool[J]. Metall Mater Trans A, 2012, 43:724-37.
Chen G Q, Shi Q Y, Li Y J, et al.Computational fluid dynamics studies on heat generation during friction stir welding of aluminum alloy[J].Computational Materials Science, 2013, 79:540-546.
Chen G Q, MaQ X, Zhang S, et al.Computational fluid dynamics simulation of friction stir welding: A comparative study on different frictional boundary conditions[J]. Journal of Materials Science & Technology,2018, 34:128-134.
Zhang S, Shi Q Y, Liu Q, et al.Effects of tool tilt angle on the in-process heat transfer and mass transfer during friction stir welding[J].International Journal of Heat and Mass Transfer, 2018,125:32-42.
Yang C L, Dai Q L, Shi Q Y,et al.Flow-coupled thermo-mechanical analysis of frictional behaviors at the tool-workpiece interface during friction stir welding[J].Journal of Manufacturing Processes,2022, 79: 394-404.
Chen G Q, Wang G Q, Shi Q Y, et al.Three-dimensional thermal-mechanical analysis of retractable pin tool friction stir welding process[J].Journal of Manufacturing Processes,2019,41: 1-9.
Chen G Q, Feng Z L, Zhu Y C, et al. An Alternative Frictional Boundary Condition for Computational Fluid Dynamics Simulation of Friction Stir Welding[J].Journal of Materials Engineering and Performance,2016, 25: 4016-4023.
Arora A, De A, DebRoy T. Toward optimum friction stir welding tool shoulder diameter[J]. Scripta Materialia,2011,64:9-12.
Tello K E, Gerlich A P, Mendez P F. Constants for hot deformationconstitutive models for recent experimental data[J]. Science and Technology ofWelding & Joining, 2010, 15(3): 260-266.
Chen S J, Han Y, JiangX Q, et al. Study on in-situ material flow behaviour during friction stir welding via a novel material tracing technology[J]. Journal of Materials Processing Technology, 2021, 297: 117205.
编辑部网址:http://www.71dhj.comhttp://www.71dhj.com
相关作者
相关机构