超音频MIG辅助三丝电弧增材制造工艺研究
Research on Superaudio MIG Assisted Triple Wire Arc Additive Manufacturing Process
- 2023年53卷第2期 页码:104-110
DOI: 10.7512/j.issn.1001-2303.2023.02.10
扫 描 看 全 文
扫 描 看 全 文
张加恒,黄祎,郭顺,等.超音频MIG辅助三丝电弧增材制造工艺研究[J].电焊机,2023,53(2):104-110.
ZHANG Jiaheng, HUANG Yi, GUO Shun, et al.Research on Superaudio MIG Assisted Triple Wire Arc Additive Manufacturing Process[J].Electric Welding Machine, 2023, 53(2): 104-110.
多丝多弧的增材技术具有更高的成形效率,但是较大的热输入会影响形貌和性能,因而引入超音频电弧以达到细化晶粒并提高熔深的目的。以316L不锈钢作为试验材料,采用MIG焊工艺,自主搭建超音频三丝电弧增材制造平台,基于单丝单道模型,进行了三丝单道单层以及三丝单道多层增材工艺试验研究。结果表明,30 kHz超音频电弧可显著细化熔敷道组织并破坏树枝状结构,横向和水平平均抗拉强度分别提高了81 MPa和23 MPa,水平平均断裂延伸率从18.5%提升到39.3%,且整体提高试件的显微硬度。但若频率过高,超声波带来的能量会过高,从而减缓冷却速度,导致晶粒粗化。
Multi-wire and multi-arc additive technology has higher molding efficiency. But large heat input will affect the morphology and performance, so the superaudio arc is introduced to refine the grain and improve the penetration depth. In this paper, 316L stainless steel was used as the test material and MIG welding process was adopted to independently build the superaudio triple-wire arc additive manufacturing platform. Based on the single-wire single-channel model, the experiments of triple-wire single-channel single-layer and triple-wire single-channel multi-layer additive process were conducted. The results show that 30 kHz superaudio arc can significantly refine the microstructure of the weld and destroy the dendritic structure, increase the average transverse and horizontal tensile strength by 81 MPa and 23 MPa respectively, increase the average horizontal fracture elongation from 18.5% to 39.3%, and improve the microhardness of the test piece as a whole. But if the frequency is too high, the energy brought by the ultrasonic wave will be too high to slow down the cooling rate, resulting in grain coarsening.
电弧增材制造超音频多丝多弧微观组织力学性能
wire arc additive manufacturingsuperaudiomulti-wire and multi-arcmicrostructuremechanical properties
Chen X X, Shang X, Zhou Z R, et al. A Review of the Development Status of Wire Arc Additive Manufacturing Technology[J]. Advances in Materials Science and Engineering, 2022: 5757484.
Ziesing. Processing of a Martensitic Tool Steel by Wire-Arc Additive Manufacturing[J]. Materials,2022, 15(21): 7408-7408.
Jiang P F, LI X R, Zong X M, et al. Microstructure and mechanical properties of Ti basic bionic gradient heterogeneous alloy prepared by multi-wire arc additive manufacturing[J]. Journal of Alloys and Compounds, 2022, 926:166813.
ZHANG M,WANG Y, MA Z Q, et al. Non-uniform high-temperature oxidation behavior of twin wire and arc additive manufactured Ni3Al-based alloy[J]. Journal of Manufacturing Processes, 2022, 84: 522-530.
Justus Panicker C T,Senthilkumar V. Rotational arc based dual wire arc additive manufacturing of low alloy steel with Nichrome inclusions for improved mechanical properties[J]. Materials Letters, 2023, 332:133498.
占彬,冯曰海,何杰,等.碳钢双丝与单丝等离子弧增材制造成形及组织特征分析[J].焊接学报,2019,40(06):77-81,164.
ZHAN B, FENG Y H, HE J, et al. Research on fabrication and microstructure between carbon steel double wire and single wire plasma arc additive manufacturing[J]. Transactions of the China Weding Institution, 2019, 40(06): 77-81,164.
张天奕,张兆栋,王泽力,等.旁路耦合三丝间接电弧增材制造成形特性[J].焊接学报,2022,43(09):25-30,114.
ZHANG T Y, ZHANG Z D, WANG Z L, et al.Forming characteristics of bypass coupling triple-wire gas indirect arc additive manufacturing[J]. Transactions of the China Weding Institution,2022,43(09):25-30,114.
Tomar Bunty, Shiva S, Nath Tameshwer. A review on wire arc additive manufacturing: Processing parameters,defects, quality improvement and recent advances[J]. Materials Today Communications, 2022, 31:103739.
CHEN Y H, XU M F,ZHANG T M, et al. Grain refinement and mechanical properties improvement of Inconel 625 alloy fabricated by ultrasonic-assisted wire and arc additive manufacturing[J]. Journal of Alloys and Compounds, 2022, 910:164957.
王海龙,杨建伟,黄松涛,等.高气压环境脉冲频率对超音频脉冲TIG焊接头焊缝成形和性能的影响[J].焊接,2022(06):15-23.
WANG H L, YANG J W, HUANG S T, et al. Effect of pulse frequency in high pressure environment on weld formation and properties of ultra-high frequency pulsed TIG welding joint[J]. Welding & Joining, 2022(06): 15-23.
贺铂昌,张睿泽,曹千卉,等.AZ31镁合金超音频脉冲方波电弧增材成形控制[J].焊接技术,2022,51(01):1-5.
HE B C, ZHANG R Z, CAO Q H, et al. Ultra-audio pulsed square-wave arc additive forming control of AZ31 magnesium alloy[J]. Welding Technology, 2022, 51(01): 1-5.
Balasubramani Nagasivamuni,Yang Nan,Venezuela Jeffrey, et al. Ultrasonic treatment for the refinement of brittle CaZn13 phases in a biomedical Zn-Cu-Ca alloy[J]. Materials Letters, 2021, 305:130754.
Srivastava N, Chaudhari G P. Grain refinement in ultrasonicated binary aluminium alloys[J]. Journal of Crystal Growth, 2020, 532(C): 125415-125415.
庞义斌,胡凤娇,张峰,等.激光熔覆修复30CrMnSiA合金钢的显微组织和性能研究[J].电焊机,2023,53,(1):77-83.
PANG Y B, HU F J, ZHANG F, et al. Study on Microstructure and Properties of 30CrMnSiA Alloy Steel Coating Repaired by Laser Cladding[J]. Electric welding Machine, 2023, 53(1): 77-83.
相关作者
相关机构