铝合金电弧增材制造技术研究进展
Research Progress of Wire Arc Additive Manufacturing Technology for Aluminum Alloy
- 2023年53卷第2期 页码:52-67
DOI: 10.7512/j.issn.1001-2303.2023.02.05
扫 描 看 全 文
扫 描 看 全 文
方学伟,杨健楠,陈瑞凯,等.铝合金电弧增材制造技术研究进展[J].电焊机,2023,53(2):52-67.
FANG Xuewei, YANG Jiannan, CHEN Ruikai, et al.Research Progress of Wire Arc Additive Manufacturing Technology for Aluminum Alloy[J].Electric Welding Machine, 2023, 53(2): 52-67.
增材制造技术是制造业信息化、数字化、智能化的重要组成内容,而电弧增材技术在铝合金成形中具有较好的应用优势。从金属增材制造技术分类、发展历程、标准规范、技术原理等方面,对比分析了不同增材制造技术的优势与局限。特别介绍了以冷金属过渡技术为代表的电弧增材技术,讨论了电弧增材技术的自身优势与局限性,及其应用于铝合金结构件一体化制造的优势。从成形工艺、气孔缺陷、强韧化技术等多方面综述了国内外铝合金电弧增材技术的研究发展,介绍了目前国内外在铝合金电弧增材制造方向的研究工作以及遇到的主要问题,重点分析了铝合金电弧增材制造样品强韧化方法与效果,介绍了国内外的相关优秀案例。最后总结了未来铝合金电弧增材制造技术需要着重解决的问题与方向,包括原材料质量问题、几何精度问题、气孔、热裂纹和残余应力问题、组织和力学性能问题。
Additive manufacturing technology is an important component of manufacturing information, digitalization and intelligence, and arc additive technology has better application advantages in aluminum alloy forming. The advantages and limitations of different additive manufacturing technologies are compared and analyzed from the aspects of metal additive manufacturing technology classification, development history, standard specification and technology principle. In particular, the arc additive technology, represented by cold metal transition technology, is introduced, and the advantages and limitations of the arc additive technology itself and its advantages of application to the integrated manufacturing of aluminum alloy structural parts are discussed. The research and development of domestic and international arc additive technology for aluminum alloys are reviewed in terms of forming process, porosity defects, toughening technology, etc. The current research work and main problems encountered in the direction of arc additive manufacturing for aluminum alloys are introduced, the toughening methods and effects of arc additive manufacturing samples for aluminum alloys are analyzed, and relevant excellent cases at home and abroad are introduced. Finally, we summarize the problems and possible directions that need to be addressed in the future arc additive manufacturing technology for aluminum alloys, including:raw material quality, geometric accuracy, porosity, thermal cracking and residual stress, and organization and mechanical properties.
电弧增材制造铝合金成形工艺质量控制研究进展
wire arc additive manufacturingaluminum alloyformation processquality controlresearch progress
卢秉恒,李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4):1-4.
LU B H,LI D C.Development of the Additive Manufacturing(3D printing)Technology[J]. Machine Building & Automation, 2013, 42(4):1-4.
李涤尘, 贺健康, 田小永等. 增材制造:实现宏微结构一体化制造[J]. 机械工程学报,2013(6):129-135.
LI D C,HE J K,TIAN X Y,et al. Additive Manufacturing:Integrated Fabrication of Macro/Microstructures[J]. Journal of Mechanical Engineering, 2013(6):129-135.
黄卫东. 如何理性看待增材制造(3D打印)技术[J]. 新材料产业, 2013(8):9-12.
HUANG W D. How to treat additive manufacturing (3D printing) technology rationally[J]. Advanced Materials Industry, 2013(8):9-12.
Chua C K. Rapid Prototyping:Principles and Applications[M]. Manufacturing World Scientific Pub, Singapore, 2005.
Gao W, Zhang YB, Devarajan R, et al. The status, challenges, and future of additive manufacturing in engineering[J]. Computer-Aided Design, 2015, 69(C):65-89.
Levy G N, Schindel R, Kruth J P. Rapid manufacturing and rapid tooling with layer manufacturing(LM) technologies, state of the art and future perspectives[J]. CIRP Annals-Manufacturing Technology, 2003, 52(2): 589-609.
Lu B H, Li D C, Tian X Y. Development Trends in Additive Manufacturing and 3D Printing[J]. Engineering, 2015, 1(1):85-89.
Frazier WE. Metal Additive Manufacturing: A Review[J]. Journal of Materials Engineering and Performance, 2014, 23(6):1917-1928.
Standard terminology for additive manufacturing technologies[M]. ASTM International, 2012.
ASTMISO.ASTM52900-15[S]. Standard Terminology for Additive Manufacturing-General Principles-Terminology, ASTM International, West Conshoho-cken, PA, 2015.
Yap C Y, Chua C K, Dong Z L,et al. Review of selective laser melting: Materials and applications[J]. Applied Physics Reviews, 2015, 2(4):041101.
Wang P, Nai M L S, Tan X, et al. Anisotropic mechanical properties in a big-sized Ti-6Al-4V plate fabricated by electron beam melting[C]//TMS 2016 145th Annual Meeting & Exhibition. Springer, Cham, 2016: 5-12.
Simchi A, Petzoldt F, Pohl H. On the development of direct metal laser sintering for rapid tooling[J]. Journal of Materials Processing Technology, 2003, 141(3):319-328.
King D, Tansey T. Rapid tooling: selective laser sintering injection tooling[J]. Journal of Materials Processing Technology, 2003, 132(1):42-48.
Zheng B, Zhou Y, Smugeresky J E,et al. Thermal Behavior and Microstructural Evolution during Laser Deposition with Laser-Engineered Net Shaping: Part I. Numerical Calculations[J]. Metallurgical and Materials Transactions A (Physical Metallurgy and Materials Science), 2008, 39(9):2228-2236.
Thomsen P, Malmström J, Emanuelsson L, et al. Electron beam-melted, free-form-fabricated titanium alloy implants: Material surface characterization and early bone response in rabbits[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2010, 90B(1):35-44.
Brandl E, Palm F, Michailov V, et al. Mechanical properties of additive manufactured titanium (Ti-6Al-4V) blocks deposited by a solid-state laser and wire[J]. Materials & Design, 2011, 32(10): 4665-4675.
Wang F, Williams S, Paul C, et al. Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2013, 44(2):968-977.
Utela B, Storti D, Anderson R, et al. A review of process development steps for new material systems in three dimensional printing (3DP)[J]. Journal of Manufacturing Processes, 2008, 10(2):96-104.
Everton S K, Hirsch M, Stravroulakis P, et al. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing[J]. Materials & Design, 2016, 95:431-445.
Bhavar V, Kattire P, Patil V, et al. A review on powder bed fusion technology of metal additive manufacturing[C]//4th International Conference and Exhibition on Additive Manufacturing Technologies-AM-2014, September. 2014: 1-2.
Galarraga H, Lados D A, Dehoff R R, et al. Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM)[J]. Additive Manufacturing, 2016, 10(47):47-57.
Atwood C, Ensz M, Greene D, et al. Laser Engineered Net Shaping (LENSTM):A Tool for Direct Fabrication of Metal Parts[C]//Office of Scientific & Technical Information Technical Reports, 1998.
Ding D, Pan Z, Cuiuri D, et al. Wire-feed additive manufacturing of metal components: technologies, developments and future interests[J]. The International Journal of Advanced Manufacturing Technology,2015,81(1-4):465-481.
Thompson M K, Moroni G, Vaneker T, et al. Design for Additive Manufacturing:Trends,opportunities, considerations, and constraints[J]. CIRP annals, 2016, 65(2): 737-760.
DebRoy T, Wei H L, Zuback J-S, et al. Additive manufacturing of metallic components-process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112-224.
杨合, 李落星, 王渠东,等. 轻合金成形领域科学技术发展研究[J]. 机械工程学报,2010, 46(12):31-42.
YANG H,LI L X,WANG Q D,et al. Research on the Development of Advanced Forming for Lightweight Alloy Materials Area[J]. Journal of Mechanical Engineering, 2010, 46(12):31-42.
Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74(Supplement C): 401-477.
Mertens A I, Delahaye J, Lecomte-Beckers J. Fusion-Based Additive Manufacturing for Processing Aluminum Alloys: State-of-the-Art and Challenges[J]. Advanced Engineering Materials, 2017:1700003.
Ding Y, Muñiz-Lerma J A, Trask M, et al. Microstructure and mechanical property considerations in additive manufacturing of aluminum alloys[J]. MRS Bulletin, 2016, 41(10): 745-751.
Derekar K S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium[J]. Materials Science and Technology, 2018, 34(8): 895-916.
ASTM F3187-16, Standard Guide for Directed Energy Deposition of Metals[S].ASTM International, West Conshohocken, PA, 2016.
Ralph B. Method of making decorative articles: U.S. Patent 1,533,300[P]. 1925-4-14.
Shockey HK. Machine for reclaiming worn brake drums: U.S. Patent 1,886,503[P]. 1932-11-8.
Ujiie A. Process and apparatus for triple-electrode mig welding using short-circuit and spray-arc deposition: U.S. Patent 3,746,833[P]. 1973-7-17.
Kussmaul K, Schoch F W, Luckow H. High quality large components ‘shape welded’ by a SAW process[J]. Weld J., 1983,62(9):17-24.
Dickens PM, Pridham MS, Cobb RC, et al. Rapid prototyping using 3-D welding[C]//1992 International Solid Freeform Fabrication Symposium, 1992.
Ribeiro A F, Norrish J. Metal based rapid prototyping for more complex shapes[C]//Biennial International Conference on "Computer Technology in Welding", The Welding Institute, Abington Publishing,1996.
Kovacevic R, Beardsley H. Process Control of 3D Welding as a Droplet-Based Rapid Prototyping Technique[C]//Proc. ofthe SFF Symposium, Univ. ofTexas at Austin, Austin TX. 1998: 57-64.
Jandric Z, Labudovic M, Kovacevic R. Effect of heat sink on microstructure of three-dimensional parts built by welding-based deposition[J]. International Journal of Machine Tools and Manufacture, 2004, 44(7-8): 785-796.
Martina F, Mehnen J, Williams SW, et al. Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V[J]. Journal of Materials Processing Technology,2012, 212(6):1377-1386.
Spencer J D, Dickens P M, Wykes C M. Rapid prototyping of metal parts by three-dimensional welding[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1998, 212(3): 175-182.
Baufeld B, Vanderbiest O, Gault R. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: microstructure and mechanical properties[J]. Materials & Design, 2010, 31: 106-111.
Thibault D, Bocher P, Thomas M. Residual stress and microstructure in welds of 13%Cr-4%Ni martensitic stainless steel[J]. Journal of Materials Processing Technology, 2009, 209(4):2195-2202.
Katou M, Oh J, Miyamoto Y, et al. Freeform fabrication of titanium metal and intermetallic alloys by three-dimensional micro welding[J]. Materials & Design, 2007, 28(7):2093-2098.
Song Y A, Choi D, Jee H. 3D welding and milling: Part I-a direct approach for freeform fabrication of metallic prototypes[J]. International Journal of Machine Tools and Manufacture, 2005, 45(9):1057-1062.
Suryakumar S, Karunakaran K, Bernard A, et al. Weld bead modeling and process optimization in Hybrid Layered Manufacturing[J]. Computer-Aided Design, 2011, 43(4):331-344.
Ding D, Pan Z, Cuiuri D, et al. A tool-path generation strategy for wire and arc additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(1-4):173-183.
Ding D, Pan Z, Cuiuri D, et al. Automatic multi-direction slicing algorithms for wire based additive manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2015, 37(C):139-150.
Xiong J, Zhang G, Gao H, et al. Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(2):417-423.
Bai X, Zhang H, Wang G. Modeling of the moving induction heating used as secondary heat source in weld-based additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology,2015, 77(1-4): 717-727.
Derekar KS. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium[J]. Materials Science and Technology, 2018, 34(8): 895-916.
Wu B, Pan Z, Ding D, et al. A review of the wire arc additive manufacturing of metals: Properties, defects and quality improvement[J]. Journal of Manufacturing Processes, 2018, 35: 127-139.
Pan Z, Ding D, Wu B, et al. Arc welding processes for additive manufacturing: a review[M]. Transactions on Intelligent Welding Manufacturing, Springer, Singapore, 2018: 3-24.
Ding D, Pan Z, Cuiuri D, et al. A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM)[J]. Robotics and Computer-Integrated Manufacturing, 2015, 31:101-110.
杨修荣. 超薄板的CMT冷金属过渡技术[J]. 焊接, 2005(12):52-54.
YANG X R. CMT Technic ofthe Ultrathin Sheets[J]. Welding & Joining, 2005(12):52-54.
杨修荣. 超薄板MIG/MAG焊--CMT冷金属过渡技术[J]. 电焊机, 2006, 36(6):5-7.
YANG X R. CMT cold metal transfer process[J]. Electric Welding Machine, 2006, 36(6):5-7.
Wang P, Hu S, Shen J, et al. Characterization the contribution and limitation of the characteristic processing parameters in cold metal transfer deposition of an Al alloy[J]. Journal of Materials Processing Technology, 2017, 245:122-133.
Pickin C G, Young K. Evaluation of cold metal transfer (CMT) process for welding aluminium alloy[J]. Science and Technology of Welding and Joining,2006, 11(5):583-585.
Pickin C G, Williams S W, Lunt M. Characterisation of the cold metal transfer (CMT) process and its application for low dilution cladding[J]. Journal of Materials Processing Technology, 2011, 211(3):496-502.
Ola O T, Doern F E. A study of cold metal transfer clads in nickel-base INCONEL 718 superalloy[J]. Materials & Design, 2014, 57:51-59.
Elrefaey A. Effectiveness of cold metal transfer process for welding 7075 aluminium alloys[J]. Science and Technology of Welding and Joining, 2015, 20(4):280-285.
Gungor B, Kaluc E, Taban E, et al. Mechanical and microstructural properties of robotic Cold Metal Transfer (CMT) welded 5083-H111 and 6082-T651 aluminum alloys[J]. Materials & Design,2014,54:207-211.
Almeida P S, Williams S. Innovative process model of Ti-6Al-4V additive layer manufacturing using cold metal transfer (CMT)[C]//Proceedings of the twenty-first annual international solid freeform fabrication symposium, University of Texas at Austin, Austin, TX, USA, 2010.
Leinonen M. Additive-layer-manufacturing by CMT using Cu97Si3 wire on steel[D]. UK: Cranfield University, 2011.
Cong B Q, Ding J L, Williams S W. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3% Cu alloy[J]. Int J Adv Manuf Tech, 2014, 76(9-12): 1593-1606.
Reduce costs and increase output with robotic welding, in[EB/OL].https://www.scottautomation.com/applications/metal-fabrication/welding/https://www.scottautomation.com/applications/metal-fabrication/welding/
Williams S W, Martina F, Addison A C, et al. Wire + Arc Additive Manufacturing[J]. Materials Science & Technology, 2016(7):641-647.
DuPont J N, Marder A R. Thermal efficiency of arc welding processes[J]. Welding Journal-Including Wel-ding Research Supplement, 1995, 74(12): 406.
Gustafson C, Glad A, Rännar L. Efficient cooling with tool inserts manufactured by electron beam melting [J]. Rapid Prototyp J, 2007, 13(3): 128-135.
Unocic R R, Dupont J N. Process efficiency measurements in the laser engineered net shaping process[J]. Metall Mater Trans B, 2004, 35(1): 143-152.
Taminger K, Hafley R A. Electron Beam Freeform Fabrication: A Rapid Metal Deposition Process[C]//Proceedings of the 3rd Annual Automotive Composites Conference. 2003:9-10.
Baufeld B, Brandl E, Van der Biest O. Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition[J]. Journal of Materials Processing Technology, 2011, 211(6): 1146-1158.
Wang H, Jiang W, Ouyang J, et al. Rapid prototyping of 4043 Al-alloy parts by VP-GTAW[J]. Journal of Materials Processing Technology, 2004, 148(1): 93-102.
Ouyang J H, Wang H, Kovacevic R. Rapid prototyping of 5356-aluminum alloy based on variable polarity gas tungsten arc welding: process control and microstructure[J]. Mater Manuf Process, 2002, 17(1):103-124.
Zhang S, Hu S, Wang Z. Weld penetration sensing in pulsed gas tungsten arc welding based on arc voltage[J]. Journal of Materials Processing Technology, 2016, 229:520-527.
Ying L, Hu S, Shen J, et al. Geometrical and microstructural characteristics of the TIG-CMT hybrid welding in 6061 aluminum alloy cladding[J]. Journal of Materials Processing Technology, 2017, 239:18-30.
Horgar A, Fostervoll H, Nyhus B, et al. Additive manufacturing using WAAM with AA5183 wire[J]. Journal of Materials Processing Technology,2018,259:68-74.
Chang T, Fang X, Liu G, et al. Wire and arc additive manufacturing of dissimilar 2319 and 5B06 aluminum alloys[J]. Journal of Materials Science & Technology, 2022, 124: 65-75.
Gu J L, Ding J L, Cong B Q, et al. The influence of wire properties on the quality and performance of Wire+ Arc Additive Manufactured aluminium parts[C]//Advanced Materials Research. Trans Tech Publications, 2015, 1081:210-214.
Bai J Y, Yang C L, Lin S B, et al. Mechanical properties of 2219-Al components produced by additive manufacturing with TIG[J]. International Journal of Advanced Manufacturing Technology, 2016,86(1-4):479-485.
Bai J Y, Fan C L, Lin S B, et al. Mechanical Properties and Fracture Behaviors of GTA-Additive Manufactured 2219-Al After an Especial Heat Treatment[J]. Journal of Materials Engineering and Performance, 2017, 26(4):1808-1816.
姜云禄. 基于冷金属过渡技术的铝合金快速成形技术及工艺研究[D]. 黑龙江:哈尔滨工业大学,2013.
JIANG Y L. Research onthe Rapid Prototyping Technology and Forming Processof Aluminum Alloy Based onthe CMT[D].Heilongjiang: Harbin Institute of Technology,2013.
Zhang C, Li Y, Gao M, et al. Wire arc additive manufacturing of Al-6Mg alloy using variable polarity cold metal transfer arc as power source[J]. Materials Science and Engineering: A, 2018, 711: 415-423.
张瑞. 基于CMT的铝合金电弧增材制造(3D打印)技术及工艺研究[D]. 江苏:南京理工大学, 2016.
ZHANG R. Research on the aluminum alloy arc additive manufacturing (3D printing) technology and process based on the CMT[D].Jiangsu:Nanjing University of Science & Technology,2016.
Wang P, Hu S S, Shen J Q, et al. Microstructure and mechanical behaviour of cold metal transfer welded Mg/Al dissimilar joint using wire AZ31 as filler metal[J]. Science and Technology of Welding and Joining, 2017, 22(4):353-361.
Wang P,Hu S S, Shen J Q,et al. Effects of electrode positive/negative ratio on microstructure and mechanical properties of Mg/Al dissimilar variable polarity cold metal transfer welded joints[J]. Materials Science and Engineering:A, 2016, 652:127-135.
Cong B, Qi Z, Qi B, et al. A comparative study of additively manufactured thin wall and block structure with Al-6.3% Cu alloy using cold metal transfer process[J]. Applied Sciences, 2017, 7(3): 275.
Cong B, Ouyang R, Qi B, et al. Influence of Cold Metal Transfer Process and Its Heat Input on Weld Bead Geometry and Porosity of Aluminum-Copper Alloy Welds[J]. Rare Metal Materials and Engineering, 2016, 45(3):606-611.
Fang X W, Zhang L J, Li H, et al. Microstructure Evolution and Mechanical Behavior of 2219 Aluminum Alloys Additively Fabricated by the Cold Metal Transfer Process[J]. Materials, 2018, 11(5):812.
Fang X W, Zhang L J, Chen G P, et al. Correlations between Microstructure Characteristics and Mechanical Properties in 5183 Aluminium Alloy Fabricated by Wire-Arc Additive Manufacturing with Different Arc Modes[J]. Materials,2018, 11: 2075.
Ryan E M, Sabin T J, Watts J F, et al. The influence of build parameters and wire batch on porosity of wire and arc additive manufactured aluminium alloy 2319[J]. Journal of Materials Processing Technology,2018,262: 577-584.
Devletian JH, Wood WE. Factors affecting porosity in aluminum welds-A review[J]. Welding Research Council, Bulletin, 1983: 1-18.
Bai J, Ding H L, Gu J L, et al. Porosity evolution in additively manufactured aluminium alloy during high temperature exposure[C]//IOP Conference Series: Materials Science and Engineering,IOP Publishing,2017, 167(1): 012045.
Cong B, Ding J, Williams S. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(9-12):1593-1606.
Gu J, Ding J, Williams S W, et al. The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys[J]. Journal of Materials Processing Technology, 2016, 230:26-34.
Gu J, Ding J, Williams S W, et al. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3 Cu alloy[J]. Materials Science and Engineering: A, 2016, 651: 18-26.
Colegrove P A, Donoghue J, Martina F, et al. Application of bulk deformation methods for microstructural and material property improvement and residual stress and distortion control in additively manufactured components[J]. Scripta Materialia, 2017, 135: 111-118.
Fu Y, Zhang H, Wang G, et al. Investigation of mechanical properties for hybrid deposition and micro-rolling of bainite steel[J]. Journal of Materials Processing Technology, 2017, 250: 220-227.
Donoghue J, Antonysamy A A, Martina F, et al. The effectiveness of combining rolling deformation with Wire-Arc Additive Manufacture on β-grain refinement and texture modification in Ti-6Al-4V[J]. Materials Characterization, 2016, 114: 103-114.
Martina F, Colegrove P A, Williams S W, et al. Mic-rostructure of interpass rolled wire + arc additive manufacturing Ti-6Al-4V components[J]. Metallurgical and Materials Transactions A, 2015, 46(12): 6103-6118.
Colegrove P A, Coules H E, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pres-sure rolling[J]. Journal of Materials Processing Technology, 2013, 213(10):1782-1791.
Gu J, Wang X, Bai J, et al. Deformation microstructures and strengthening mechanisms for the wire+ arc additively manufactured Al-Mg4.5Mn alloy with inter-layer rolling[J]. Materials Science and Engine-ering: A, 2018, 712: 292-301.
Fang X, Zhang L, Chen G, et al. Microstructure evolution of wire-arc additively manufactured 2319 aluminum alloy with interlayer hammering[J]. Materials Science and Engineering A, 2020:140168.
Jing Y, Fang X, Xi N, et al. Investigation of microstructure and mechanical properties evolution in 7050 aluminum alloy and 316L stainless steel treated by laser shock peening[J]. Materials Characterization, 2021, 182:111571.
Jing Y, Fang X, Xi N, et al. Improved tensile strength and fatigue properties of wire-arc additively manufactured 2319 aluminum alloy by surface laser shock peening[J]. Materials Science and Engineering: A, 2023: 144599.
Yan L, Chen S A, Jza B. Comprehensive review of wire arc additive manufacturing: Hardware system, physical process, monitoring, property characterization, application and future prospects - ScienceDirect[J]. Results in Engineering, 2022,13:100330.
相关作者
相关机构