液化裂纹敏感性评价试验方法综述
A Review of Test Methods for Evaluating on Liquation Cracking Susceptibility
- 2023年53卷第1期 页码:15-24
DOI: 10.7512/j.issn.1001-2303.2023.01.03
扫 描 看 全 文
扫 描 看 全 文
彭言言,吕晓春,徐锴,等.液化裂纹敏感性评价试验方法综述[J].电焊机,2023,53(1):15-24.
PENG Yanyan, LV Xiaochun, XU Kai, et al.A Review of Test Methods for Evaluating on Liquation Cracking Susceptibility[J].Electric Welding Machine, 2023, 53(1): 15-24.
在机械装备制造业中,由焊接缺陷引起的事故频发,焊接热裂纹是典型焊接缺陷之一。液化裂纹作为热裂纹的常见形态,是由于母材受焊接热作用或多道焊的前道焊缝金属受后续焊道再热作用,局部晶界液化而导致的裂纹,易引发金属结构失效及事故,客观评价和理解材料的液化裂纹敏感性尤为重要。目前已开发140多种试验方法用于评价金属材料焊件液化裂纹敏感性,其中热延性试验、程控平板拉伸试验等方法在压力容器、航天航空、石油化工等领域得到广泛应用。综述了其中适用性较广的几种方法,并总结了不同试验方法所采用的敏感性判据,主要包括温度区间和裂纹长度等。但是不同判据的适用条件有所差异,因此未来推进已有材料液化裂纹评价试验方法的优化以及判据结果的标准化研究尤为重要,这将有助于机械装备中液化裂纹的预测和防治,提高机械装备的使用寿命。
In the machinery equipment manufacturing industry, accidents caused by welding defects occur frequently. Welding hot crack is one of the typical welding defects. As common forms of hot cracks, liquation cracks can easily lead to metal structure failures and accidents. The objective evaluation and understanding of the liquation crack susceptibility of materials is particularly important. Liquation cracks are cracks caused by local grain boundary liquefaction due to the heat of the base metal or the reheating of the previous weld metal of the multi-pass weld. More than 140 test methods have been developed to evaluate the susceptibility of liquation crack in metal welding parts, among which thermal ductility test, programmierter verformungs test is widely used in pressure vessels, aerospace, petrochemical and other fields. In this paper, several kinds of widely-used method are reviewed, and the different test methods adopted by the susceptibility criterion have been discussed, which mainly includes temperature range and cracking length. However, the applicable conditions of different criteria are different, so it is particularly important to promote the optimization of liquation crack evaluation test of existing materials and the standardization of criterion results in the future, which will help to predict and prevent liquation cracking in machinery equipment and improve the service life of machinery and equipment.
热裂纹液化裂纹试验方法敏感性判据热影响区
hot crackliquation cracktest methodsusceptibility criterionheat affected zone
王森, 孙明正. 电梯主驱动轴开裂原因[J]. 理化检验(物理分册), 2021, 57(4): 51-54,62.
WANG S,SUN M Z. Cracking Causes of Main Drive Shaft of Elevator[J]. Physical Testing and Chemical Analysis(Part A:Physical Testing) , 2021, 57(4): 51-54,62.
张红伟. T91高温过热屏裂纹原因及控制措施分析[J]. 山西化工, 2020, 40(4): 53-56.
ZHANG H W. Analysis of Crack Causes and Control Measures of T91 High Temperature Overheating Screen[J]. Shanxi Chemical Industry, 2020, 40(4): 53-56.
张玉忱, 李凤清, 陶传戈. K417合金叶片氩弧焊Co-Cr-W耐磨层焊接裂纹分析[J]. 铸造技术, 2013, 34(9): 1199-1202.
ZHANG Y C,LI F Q,TAO C G. Analysis of Welding Cracks of Co-Cr-W Wear Layer Welding in Argon Arc Welding of K417 Alloy Blades[J]. Foundry Technology, 2013, 34(9): 1199-1202.
王建. 焊缝结晶裂纹的危害及控制措施[J]. 铸造技术, 2011, 32(11): 1625-1627.
WAANG J. Hazards and Control Measures of Weld Solidification Cracks [J]. Foundry Technology, 2011, 32(11): 1625-1627.
闵晓峰, 赵宗合, 李亚丽, 等. 焊接工艺参数对9Ni钢焊接接头组织及弯曲性能的影响[J]. 电焊机, 2019, 49(6): 41-44,49.
MIN X F,ZHAO Z H,LI Y L, et al. Influence of Welding Process Parameters on Microstructure and Bending Properties of 9Ni Steel Welded Joint[J]. Welding Machine, 2019, 49(6): 41-44,49.
宋文清, 曲伸, 石竖鲲, 等. 高涡叶片叶冠堆焊耐磨层热影响区裂纹故障分析[J]. 电焊机, 2014, 44(6):89-93.
SONG W Q,QV S,SHI S K, et al. Crack Failure Analysis of Heat-Affected Zone of High Vortex Blade Crown Overlay Welding[J]. Electric Welding Machine, 2014, 44(6):89-93.
Lippold J C. Welding Metallurgy and Weldability. Wiley-Blackwell[M]. America:John Wiley & Sons Inc, 2014.
国家市场监督管理总局, 国家标准化管理委员会. GB/T 41107.1—2021 金属材料焊缝破坏性试验 弧焊方法 第1部分:总则[S]. 北京:中国标准出版社,2021.
刘彩云, 刘士伟, 孙元, 等. 高温合金熔化焊焊接性的研究进展[J]. 电焊机, 2021, 51(1):28-36.
LIU C Y,LIU S W,SUN Y,et al. Research Progress on Weldability of Melting Welding of Superalloy[J]. Electric Welding Machine, 2021, 51(1):28-36.
DuPont J N, Lippold J C, Kiser S D. Welding Metallurgy and Weldability of Nickel-Base Alloys[M]. America: John Wiley & Sons Inc., 2009.
International Standard. ISO 17641-2:2005 Destructive tests on welds in metallic materials - Hot cracking tests for weldments - Arc welding processes - Part 2: Self-restraint tests[S]. Danish Standards, 2005.
International Standard. UNE-EN ISO 15792-1/A1-2012 Welding consumables - Test methods - Part 1: Test methods for all-weld metal test specimens in steel, nickel and nickel alloys[S]. ES-AENOR, 2012.
中国机械工程学会焊接学会. 焊接手册.第2卷,材料的焊接[M]. 北京:机械工业出版社, 2007.
张子文. Al-Mg-Si合金LD_2焊接热裂纹研究——焊缝热裂纹[J]. 宇航材料工艺, 1988(6): 41-45.
ZHANG Z W. Study on Welding Hot Crack of Al-Mg-Si Alloy LD_2——Hot Crack of Weld[J]. Aerospace Materials Technology, 1988(6): 41-45.
焦好军, 周炼刚, 王明正, 等. 航天用铝合金/焊丝焊接性研究[J]. 宇航材料工艺, 2013, 43(3): 66-70.
JIAO H J,ZHOU L G,WANG M Z,et al. Study on Weldability of Aerospace Aluminum Alloy/Welding Wire[J]. Aerospace Materials & Technology, 2013, 43(3): 66-70.
温斯涵, 周炼刚, 程昊, 等. 2195铝锂合金弧焊技术研究现状[J]. 宇航材料工艺, 2021, 51(3): 1-7.
WEN S H,ZHOU L G,CHENG H,et al. 2195 Research Status of Aluminum-Lithium Alloy Arc Welding Technology[J]. Aerospace Materials & Technology, 2021, 51(3): 1-7.
Lippold J C, Baeslack W A I, Varol I. Heat-affected zone liquation cracking in austenitic and duplex stainless steels[J]. Welding Journal, 1992, 71(1):1-14.
International Standard. UNE-EN ISO 15614-1, Specification and qualification of welding procedures for metallic materials procedure test - Part 1: Arc and gas welding of steels and are welding of nickel and nickel alloys[S]. BSI Standards Publication, 2019.
International Standard. UNE-EN ISO 5173-2011 Destructive tests on welds in metallic materials - Bend tests[S]. ES-AENOR, 2009.
International Standard. UNE-EN ISO 5178-2019 Destructive tests on welds in metallic materials - Longitudinal tensile test on weld metal in fusion welded joints[S]. BSI Standards Publication, 2019.
全国焊接标准化技术委员会. GB/T 41107.2—2021 金属材料焊缝破坏性试验 弧焊方法 第2部分:自拘束试验[S], 北京:中国标准出版社,2021.
Lundin B, Spond D F. The Nature and Morphology of Fissures in Austenitic Stainless Steel Weld Metals[J]. American welding society, 1976, 11: 10-14.
Farrar J C M. Hot Cracking Tests — The Route to International Standardization[M]. Berlin,Heidelberg: Spri-nger, 2005.
全国焊接标准化技术委员会. GB/Z 41107.3—2021 金属材料焊缝破坏性试验 弧焊方法 第3部分:外载荷试验[S]. 北京:中国标准出版社, 2021.
Caron J L. Weldability Evaluation of Naval Steels[D]. Dissertation Abstracts International, 2010.
Andersson J. Weldability of Precipitation Hardening Superalloys – Influence of Microstructure[D]. Chalmers University of Technology, 2011.
Lippold J C. Hot Cracking Phenomena in Welds[M]. Berlin Heidelberg: Springer, 2005.
常凤华, 高增福. 用于高温设备的改进型316不锈钢的热塑性及热裂纹行为[J]. 锅炉制造, 1998(2): 44-55.
CHANG F H,GAO Z F. Thermoplastic and Thermal Crack Behavior of Improved 316 Stainless Steel for High Temperature Equipment [J]. Boiler Manufacturing, 1998(2): 44-55.
Silva C L M D, Scotti, Américo. Performance assessment of the (Trans)Varestraint tests for determining solidification cracking susceptibility when using welding processes with filler metal[J]. Measurement Science & Technology, 2004, 15(11):2215.
Pepe J J. Effects of Constitutional Liquation in 18-Ni Maraging Steel Weldments[J]. Welding Journal, 1967, 46(9):411-422.
Tanaka K, Nishimura F, Matsui M, et al. Phenomenological analysis of plateaus on stressstrain hysteresis in TiNi shape memory alloy wires[J]. Smart Mater. Struct., 1996(5): 788-795.
Fink C, Zinke M,Keil D. Evaluation of Hot Cracking Susceptibility of Nickel- Based Alloys by the PVR Test[J]. Welding in the World, 2012, 56(7-8): 37-43.
Savage W F, Lundin C D. The varestraint test[J]. Welding Journal, 1965, 44(10): 433-442.
Kadoi K, Okano S, Yamashita S, et al. Investigation of standardizing for evaluation method of transverse-Varestraint test[J]. Welding International, 2019, 33(4-6):189-199.
侯永涛, 霍树斌, 陈佩寅, 等. 镍基合金焊接性的研究方法综述[J]. 金属加工(热加工), 2021(8): 19-23.
HOU Y T,HUO S B,CHEN P Y,et al. Review of Research Methods on Weldability of Nickel-Based Alloys[J]. Metal Processing (Hot Working),2021(8):19-23.
Chih-Chun Hsieh. Hot Cracking Susceptibility of 800H and 825 Nickel-Base Superalloys during Welding via Spot Varestraint Test[J]. Journal of Metallic Material Research, 2019, 2(1): 19-29.
Finton T, Lippold J C. Standardization of the Transvarestraint test WI Summary Report No 04 XX [R], 2004.
Lin W, Lippold J, Baeslack W. An investigation of heat-affected zone liquation cracking, Part 1: A methodology for quantification. Weld Journal, 1993, 71(4): 135-153.
西本和俊, 才田一幸, 乾正弘, 等. 小型スポ ッ トバ レス トレイン試験 による高温割れ感受性評価[C]//溶接学会论文集, 2000.
才田一幸, 野本裕己, 谷口彰, 等. 690合金多層盛溶接金属のミクロ割れ発生挙動および機構[C]//溶接学会论文集: 2010.
Saida K, Bunda K, Ogiwara H, et al. Microcracking susceptibility in dissimilar multipass welds of Ni-base alloy 690 and low-alloy steel[J]. Welding International, 2015, 29(9): 668-680.
Chang C, Chen C L, Wen J, et al. Characterization of Hot Cracking Due to Welding of High-Strength Aluminum Alloys[J]. Advanced Manufacturing Processes, 2012, 27(6): 658-663.
Divya M, Albert S. Dilution effects on weld metal microstructure and liquation cracking susceptibility of 304B4 SS joined using E309 electrode[J]. Journal of Manufacturing Processes, 2018, 34: 540-554.
DuPont J, Lippold J, Kiser S. Welding Metallurgy and Weldability of Nickel-Base Alloys[M]. America: John Wiley & Sons Inc., 2009.
Singh S, Andersson J. Heat Affected Zone Liquation Cracking in Welded Cast Haynes 282[J]. Metals Open Access Metallurgy Journal, 2019, 10(1): 29.
Lin W, Baeslace W A, 夏德顺, 等. 铝锂合金焊接裂纹敏感性[J]. 导弹与航天运载技术, 1996(5): 56-63.
Lin W,Baeslace W A,Xia D S,et al.Weld Cracking Susceptibility of Aluminium Lithium Alloys[J].Missiles and Space Vehicles, 1996(5): 56-63.
Łyczkowska K,Adamieca J,Jachym R, et al. Properties of the Inconel 713 Alloy Within the High Temperature Brittleness Range[J]. Archives Of Foundry Engineering, 2017, 17(4): 103-108.
Shi S, Lippold J, Ramirez J. Hot Ductility Behavior and Repair Weldability of Service-Aged, Heat-Resistant Stainless Steel Castings[J]. Welding Journal, 2010,89:210-217.
Lundin C D, Lee C H, Menon R. Hot Ductility And Weldability Of Free Machining Austenitic Stainless Steel[C]//67th Annual AWS Meeting, 1986.
Srinivasan M G, Divya M M, Das C R, et al. Weldability studies on borated stainless steel using Varestraint and Gleeble tests[J]. Welding in the World London, 2015,59:119-126.
Srinivasan M G, Divya M M, Albert S K, et al. Study of Hot Cracking Behaviour of Nitrogen-Enhanced Austenitic Stainless Steels using Varestraint and Hot Ductility Tests[J]. Welding in the World, 2013, 54(11-12):322-332.
Xinqiang W, Yao F, Wei K, et al. Corrosion Behavior of High Nitrogen Austenitic Stainless Steels[J]. Journal of the Chinese Society of Corrosion and Protection,2016, 36(3): 197-204.
Kou S, Zreiba N, Tsai M. Predicting Sensitization In 304 Stainless Steel Welds[J]. Journal of metals, 1985, 37(11): 28.
American National Standards Institute. AWS B4.0:2007 standard methods for mechanical testing of welds[S]. American welding society, 2007.
Statharas D, Atkinson H, Thornton R, et al. Getting the Strain Under Control: Trans-Varestraint Tests for Hot Cracking Susceptibility[J]. Metallurgical and Materials Transactions A, 2019, 50(4):1748-1762.
路文江, 中尾嘉邦, 筱崎贤二. 镍基合金焊接热影响区的液化裂纹敏感性[J]. 焊接学报, 1993(3): 186-194.
LU W J, Yoshikuni N K, Yoshiji T Z. Liquefied Crack Sensitivity in the Heat-Affected Zone of Nickel-Based Alloy Welding[J]. Transactions of the Chinese Society of Welding, 1993(3): 186-194.
邹茉莲, 王红英. 球罐用钢热裂纹敏感性试验[J]. 石油工程建设, 1997(2): 1-3,58.
ZOU M L,WANG H Y. Thermal Crack Susceptibility Test of Steel for Spherical Tanks[J]. Petroleum Engineering Construction, 1997(2): 1-3,58.
Dupont J, Lippold J, Kiser S. Welding Metallurgy and Weldability of Nickel-Base Alloys[M]. Hoboken, New Jersey: John Wiley and Sons Inc, 2009.
潘永明, 王洪亮, 王铁钧, 等. 高强铝合金液化裂纹敏感性定量研究[C]//中国焊接协会. 第十次全国焊接会议论文集(第1册). 2001: 523-526.
Eskin D G, Suyitno, Katgerman L. Mechanical properties in the semi-solid state and hot tearing of aluminium alloys[J]. Progress in Materials Science, 2004, 49(5):629-711.
Lundin C, Lingenfelter A, Grotke G., et al. The Varestraint Test[C]//Welding Research Council Bulletin 280,1982: 1-19.
陈树君, 王宣, 袁涛, 等. 镁合金焊缝液化裂纹敏感性及预测方法探究[J]. 金属学报, 2018, 54(12): 1735-1744.
CHEN S J,WANG X,YUAN T,et al. Study on Liquefaction Crack Sensitivity and Prediction Method of Magnesium Alloy Weld[J]. Acta Metallurgica Sinica, 2018, 54(12): 1735-1744.
陈大军, 郎波, 孙大千. 镁合金电阻点焊液化裂纹机理研究[J]. 电焊机, 2009, 39(7):14-17.
CHEN D J,LANG B,SUN D Q. Study on Liquefaction Crack Mechanism of Magnesium Alloy Resistance Spot Welding[J]. Electric Welding Machine, 2009, 39(7):14-17.
编辑部网址:http://www.71dhj.comhttp://www.71dhj.com
相关作者
相关机构