焊接工艺参数对Ti/Al异种金属磁脉冲焊接接头微观组织及力学性能的影响
Research on Microstructure and Mechanical Properties of Ti / Al Dissimilar Materials Magnetic Pulse Welding
- 2022年52卷第6期 页码:118-125
DOI: 10.7512/j.issn.1001-2303.2022.06.15
扫 描 看 全 文
扫 描 看 全 文
袁树春,章文滔,陈玉华,等.焊接工艺参数对Ti/Al异种金属磁脉冲焊接接头微观组织及力学性能的影响[J].电焊机,2022,52(6):118-125.
YUAN Shuchun, ZHANG Wentao, CHEN Yuhua, et al.Research on Microstructure and Mechanical Properties of Ti / Al Dissimilar Materials Magnetic Pulse Welding[J].Electric Welding Machine, 2022, 52(6): 118-125.
钛/铝异种金属复合结构具有比强度高、耐蚀性好等优势,在航空航天、轨道交通领域具有广阔的应用前景;但是,钛和铝两者在物理、化学和冶金学上的特性差异较大,采用传统熔化焊时极易在焊接接头中产生裂纹、气孔以及大量的脆性金属间化合物,严重恶化异种金属焊接接头的力学性能,限制了钛/铝复合结构的广泛应用。磁脉冲焊接技术是一种固相焊接技术,焊接过程中被焊材料不发生熔化,能够有效避免由于熔化带来的各种冶金缺陷。为此,本文采用磁脉冲焊接的方法,对Ti6Al4V/纯Al异种金属进行连接,系统研究了放电能量和初始间隙对接头显微组织和力学性能的影响。研究结果表明,放电能量是界面波形成的主要原因,而初始间距影响相同能量下的界面波形。初始间距1.5 mm,放电能量为24 kJ时,剪切载荷最大,为4 820 N。磁脉冲焊接过程中的高速碰撞导致界面较母材发生了明显的晶粒细化。
Ti/Al dissimilar metals joint has the advantages of high specific strength and good corrosion resistance, and has broad application prospects in the fields of aerospace and rail transportation. However, there is huge difference of physical, chemical and metallurgical properties between the two metals. It is easy to produce cracks, pores and a large number of brittle intermetallic compounds in the welded joints when using traditional fusion welding technology, which seriously deteriorates the mechanical properties of the dissimilar joints and limits the wide application of the Ti/Al joints. Magnetic pulse welding technology is a solid-phase welding technology. During the welding process, the material to be welded does not melt, which can effectively avoid various metallurgical defects caused by melting. In this paper, Ti6Al4V/ pure Al dissimilar metals were joined by magnetic pulse welding. The effects of discharge energy and stand-off distance on the microstructure and mechanical properties of the joint were systematically studied. The results show that the discharge energy is the main reason for the formation of interfacial wave, and the stand-off distance affects the interface waveform under the same energy. The maximum shear load is 4 820 N at the stand-off distance of 1.5 mm and the discharge energy of 24 kJ. The high-speed collision in the MPW process leads to obvious grain refinement of the interface compared with the base metal.
磁脉冲焊接显微组织力学性能晶粒细化界面
magnetic pulse weldingmicrostructuremechanical propertiesgrain refinementinterface
Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys[J]. Materials & Design,2014,56: 862-871.
Gangwar K, Ramulu M. Friction stir welding of titanium alloys: A review[J]. Materials & Design, 2018, 141: 230-255.
吴新强, 王少刚, 李燕. Ti-6AI-4V钛合金电子束焊接有限元分析[J]. 电焊机, 2011, 41(06): 6-12.
Wu X Q, Wang S G, Li Y. Finite element analysis of electron beam welding of Ti-6AI-4V Titanium alloy[J]. Electric Welding Machine, 2011, 41(06): 6-12.
吴宪吉, 田娟娟, 张科, 等. Ti/Al异种金属焊接研究进展[J]. 焊接技术, 2015, 44(10): 1-5.
Wu X J, Tian J J, Zhang K, et al. Research progress of Ti/Al dissimilar metal welding[J]. Welding Technology, 2015, 44(10): 1-5.
Zhang W T, Xie J L, Chen Y H, et al. Interfacial microstructure and bonding mechanism of the Al/Ti joint by magnetic pulse welding[J]. Scripta Materialia,2022, 210: 114434.
Chen X, Lei Z, Chen Y, et al. Microstructure and tensile properties of Ti/Al dissimilar joint by laser welding-brazing at subatmospheric pressure[J]. Journal of Man-ufacturing Processes, 2020, 56: 19-27.
Zhang Y, Huang J, Ye Z, et al. Influence of welding parameters on the IMCs and the mechanical properties of Ti/Al butt joints welded by MIG/TIG double-sided arc welding-brazing[J]. Journal of Alloys and Compounds, 2018, 747: 764-771.
Pei Y, Huang T, Chen F, et al. Microstructure and fracture mechanism of Ti/Al layered composite fabricated by explosive welding[J]. Vacuum, 2020, 181: 109596.
尹立孟, 张丽萍, 苏子龙, 等. 电磁制造技术在航空航天领域的应用[J]. 电焊机, 2020, 50(09): 202-206.
Yin L M, Zhang L P, Su Z L, et al. Application of electromagnetic manufacturing technology in aerospace field[J]. Electric Welding Machine, 2020, 50(09): 202-206.
Wang P Q, Chen D L, Ran Y, et al. Electromagnetic pulse welding of Al/Cu dissimilar materials: Microstructure and tensile properties[J]. Materials Science and Engineering: A, 2020, 792: 139842.
Li J S, Sapanathan T, Raoelison R N, et al. On the complete interface development of Al/Cu magnetic pulse welding via experimental characterizations and multiphysics numerical simulations[J]. Journal of Materials Processing Technology, 2021, 296: 117185.
Sarvari M, Abdollah-zadeh A, Naffakh-Moosavy H, et al. Investigation of Collision Surfaces and Weld Interface in Magnetic Pulse Welding of Dissimilar Al/Cu Sheets[J]. Journal of Manufacturing Processes, 2019, 45: 356-367.
Geng H, Xia Z, Zhang X, et al. Microstructures and mechanical properties of the welded AA5182/HC340-LA joint by magnetic pulse welding[J]. Materials Characterization, 2018, 138: 229-237.
Geng H, Mao J, Zhang X, et al. Strain rate sensitivity of Al-Fe magnetic pulse welds[J]. Journal of Materials Processing Technology, 2018, 262: 1-10.
Wang S, Zhou B, Zhang X, et al. Mechanical properties and interfacial microstructures of magnetic pulse welding joints with aluminum to zinc-coated steel[J]. Materials Science and Engineering: A, 2020, 788: 139425.
Zhu C, Xu S, Gao W, et al. Microstructure characteristics and mechanical properties of Al/Mg joints manufactured by magnetic pulse welding[J]. Journal of Magnesium and Alloys, 2021.
Zhu C, Sun L, Gao W, et al. The effect of temperature on microstructure and mechanical properties of Al/Mg lap joints manufactured by magnetic pulse welding[J]. Journal of Materials Research and Technology, 2019, 8(3): 3270-3280.
Jiang X, Chen S. Texture evolution and plastic deformation mechanism in magnetic pulse welding of dissimilar Al and Mg alloys[J]. Welding in the World, 2018, 62(6): 1159-1171.
Cui J, Ye L, Zhu C, et al. Mechanical and Microstructure Investigations on Magnetic Pulse Welded Dissimilar AA3003-TC4 Joints[J]. Journal of Materials Engineering and Performance, 2020, 29(1): 712-722.
Patra S, Arora K S, Shome M, et al. Interface characteristics and performance of magnetic pulse welded copper-Steel tubes[J]. Journal of Materials Processing Technology, 2017, 245: 278-286.
相关作者
相关机构