高效GMAW潜弧焊电弧特性数值分析
Numerical Analysis of Arc Characteristics of Efficient GMAW Buried-Arc Welding
- 2022年52卷第3期 页码:11-19
DOI: 10.7512/j.issn.1001-2303.2022.03.02
扫 描 看 全 文
扫 描 看 全 文
侯英杰,樊丁,黄健康.高效GMAW潜弧焊电弧特性数值分析[J].电焊机,2022,52(3):11-19.
HOU Yingjie, FAN Ding, HUANG Jiankang.Numerical Analysis of Arc Characteristics of Efficient GMAW Buried-Arc Welding[J].Electric Welding Machine, 2022, 52(3): 11-19.
GMAW潜弧焊有着极其出色的焊接效率,在500 A大电流下,较大的电弧力使电弧排开熔池液态金属形成潜弧空腔,配合50 m/min的送丝速度和60 cm/min的焊接速度,焊丝稳定深入到该空腔内形成潜弧形态,显著提高电弧能量利用率,可将20 mm厚开坡口的钢板单道焊透。但是利用实验手段很难观察到潜弧空腔中的电弧及熔滴过渡行为,因此基于磁流体力学理论尝试采用数值模拟手段建立电弧数学模型,来研究GMAW潜弧焊独特的电弧特性。结果表明:相比于普通GMAW焊接钟罩型的电弧形态,GMAW潜弧焊的电弧在焊丝端部更加扩展,有爬弧现象;潜弧空腔中产生的大量金属蒸气改变了电弧氛围从而改变了电弧形态并显著降低了电弧温度;外加轴向磁场对电弧形态也有很大影响,母材上方的电弧出现低温空腔。
GMAW buried-arc welding has excellent welding efficiency. Under the current of 500 A, the larger arc force makes the arc repel the liquid metal in the molten pool to form a buried arc cavity. With the wire feedrate of 50 m/min and the welding speed of 60 cm/min, the welding wire stably penetrates into the cavity to form a buried arc, which significantly improves the arc energy utilization rate and and completes the single-pass welding of 20 mm thick steel plate with a groove. However, it is difficult to observe the arc and metal transfer behavior in buried arc cavity by experimental means. Therefore, based on the theory of magnetohydrodynamics, a mathematical model of arc is established by using numerical simulation to study the unique arc characteristics of GMAW buried-arc welding. The results show that: Compared with the bell jar shaped arc of ordinary GMAW welding, the arc of high current GMAW buried-arc welding is more extended at the end of the welding wire , with arc climbing phenomenon;a large amount of metal vapor generated in the buried arc cavity changes the arc atmosphere and thus changing the arc shape and significantly reducing the arc temperature; the external axial magnetic field also has a great influence on the arc shape, and the arc above the base metal has a low temperature cavity.
GMAW潜弧焊金属蒸气外加磁场数值模拟高效焊接
GMAW buried-arc weldingmetal vaporexternal magnetic fieldnumerical simulationhigh efficiency welding
刘忠杰,马场勇人,惠良哲生,等.厚板单道全焊透的大电流潜弧焊接方法[J].金属加工(热加工), 2017(12):14-19.
LIU Zhongjie,Hoto Hayato,Tetsuo Era,et al. High current submerged arc welding method for single pass full penetration of thick plate[J]. MW Metal Forming, 2017(12):14-19.
王候庭, 史春元. 粗丝CO2气保护焊工艺性能研究 [J]. 焊接通讯, 1985(04): 4-7.
WANG Houting,SHI Chunyuan. Study on process performance of thick wire CO2 gas shielded welding[J]. Welding communication, 1985(04): 4-7.
凡乃峰, 李福永, 杨国梁. CO2潜弧焊在液压支架行业的可行性研究 [J]. 金属加工(热加工),2022,845(02):23-27.
FAN Naifeng,LI Fuyong,YANG Guoliang. Feasibility study of CO2 submerged arc welding in hydraulic support industry[J]. MW Metal Forming, 2022,845(02):23-27.
MURPHY A B,THOMAS D G. Prediction of arc,weld pool and weld properties with a desktop computer model of metal⁃inert⁃gas welding[J]. Welding in the World,2017,61(3):623-633.
LU Fenggui, WANG Huiping, MURPHY A B, et al. Analysis of energy flow in gas metal arc welding processes through self⁃consistent three⁃dimensional process simulation[J]. Interna⁃tional Journal of Heat and Mass Transfer,2014,68:215-223.
Menart J, Lin L. Numerical study of a free-burning argon arc with copper contamination from the anode[J]. Plasma Chemistry & Plasma Processing,1999, 19(2):153-170.
Murphy A B. Influence of metal vapour on arc temperatures in gas-metal arc welding: convection versus radiation[J]. Journal of Physics D: Applied Physics, 2013, 46(22): 345-351.
Ogino Y, Hirata Y, Murphy A B. Numerical simulation of GMAW process using Ar and an Ar-CO2 gas mixture[J]. Welding in the World, 2016, 60(2): 1-9.
Ogino Y, Hirata Y, Asai S. Numerical simulation of metal transfer in pulsed-MIG welding[J]. Welding in the World, 2017, 61(2): 1-8.
Tanaka M, Terasaki H, Ushio M, et al. A unified numerical modeling of stationary tungsten-inert-gas welding process[J]. Metallurgical & Materials Transactions A, 2002, 33(7): 2043-2052.
Tanaka M, Terasaki H, Ushio M, et al. Numerical study of a free-burning argon arc with anode melting[J]. Plasma Chemistry & Plasma Processing, 2003, 23(3): 585-606.
Murphy A B. A comparison of treatments of diffusion in thermal plasmas[J]. Journal of Physics D: Applied Physics, 1996, 29(29): 1922-1932.
Tanaka M, Yamamoto K, Tashiro S, et al. Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding[J]. Journal of Physics D: Applied Physics, 2010, 43(43): 434009.
肖磊,樊丁,黄自成,等.考虑金属蒸汽的定点活性钨极惰性气体保护焊电弧与熔池交互作用三维数值分析[J].机械工程学报,2016,52(16):93-99.
XIAO Lei,FAN Ding,HUANG Zicheng,et al. Three-dimensional Numerical Analysis of Interaction between Arc and Pool by Considering the Behavior of the Metal Vapor in Stationary Activating Tungsten Inert Gas Welding[J]. Journal of Mechanical Engineering, 2016,52(16):93-99.
肖磊. 磁控高效GMAW电弧—熔滴耦合行为研究[D].甘肃:兰州理工大学,2020.
XIAO Lei. Study on the Magnetic Field Control High-efficiency GMAW Arc-droplet Coupling Behavior[D]. Gansu: Lanzhou University of Technology,2020.
VOLLER V R,PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer,1987,30(8):1709-1719.
MURPHY A B. The effects of metal vapour in arc welding[J].Journal of Physics D:Applied Physics,2011,43:434001.
甘海洋. 基于图像处理旋转电弧传感GMAW平堆焊电弧形态和熔滴过渡行为的研究[D].江西:南昌大学,2019.
GAN Haiyang. Study on Arc Shape and Droplet Transfer Behavior of Rotary Arc Sensing GMAW Flat-welding Based on Image Processing[D]. Jiangxi: Nanchang University,2019.
白冰.耦合电极的磁分散电弧等离子体的数值模拟研究[D].安徽: 中国科学技术大学, 2012.
BAI Bing. The Simulation of Magnetically Dispersed Arc Plasma Coupled with Electrode[D]. Anhui: University of Science and Technology of China,2012.
编辑部网址:http://www.71dhj.comhttp://www.71dhj.com
相关作者
相关机构