考虑夹具接触约束的FSW焊接变形的固有应变法预测
Prediction of FSW Wwelding Deformation by Inherent Strain Method Considering Fixture Contact Constraints
- 2022年52卷第2期 页码:17-25
DOI: 10.7512/j.issn.1001-2303.2022.02.03
扫 描 看 全 文
扫 描 看 全 文
常天根,高月华,刘其鹏.考虑夹具接触约束的FSW焊接变形的固有应变法预测[J].电焊机,2022,52(2):17-25.
CHANG Tiangen, GAO Yuehua, LIU Qipeng.Prediction of FSW Wwelding Deformation by Inherent Strain Method Considering Fixture Contact Constraints[J].Electric Welding Machine, 2022, 52(2): 17-25.
为高效高精度地预测大尺寸结构FSW焊接变形,基于考虑夹具接触约束的热弹塑性仿真结果,在分析塑性应变的区域分布特点的基础上运用固有应变法进行分区映射,发展了一种有效的焊接变形预测方法。针对小尺寸6061-T6铝合金板材FSW焊接,将接触约束状态和固定约束状态下的焊后变形预测值与实验值进行了对比分析,结果表明接触约束状态的预测结果更接近实际的非对称变形。将该方法应用于大尺寸6061-T6铝合金板材焊接,并将所得结果与大尺寸板材接触约束状态下热弹塑性法结果进行对比,结果表明,该方法可有效地预测大尺寸板材搅拌摩擦焊接变形。
In this paper, an effective prediction method is proposed to predict the FSW weld deformation for the large-size structures using partition mapping of inherent strain under the local-global mapping frame. The contact state between fixtures and weldment is considered by contact constraints in the thermoelastic-plastic simulation of local structure. The detailed partition scheme is determined by the distribution characteristics of residual plastic strain on the basis of the prediction results of local structure, and the partition scheme is implemented to the global structure for the partition mapping of inherent strain. For the welding of small-size 6061-T6 aluminum alloy sheet, the weld deformations are predicted under the contact and fixed constraint states by thermoelastic-plastic simulation, and these results are analyzed and compared with the experimental data. The results show that the prediction results considering contact constraints are closer to the experimental data and can capture actual asymmetric deformation, thus it is necessary that the contact constraints between fixtures and weldment are modeled in the local structure. The proposed method is applied to the welding of large-size 6061-T6 aluminum alloy plates, and the prediction results are compared with those obtained by thermoelastic-plastic method considering the contact constraints between fixtures and weldment. The results show that the proposed method can effectively predict the welding FSW deformation of large-size plates.
搅拌摩擦焊固有应变分区映射接触约束焊接变形
friction stir weldinginherent strainpartition mappingcontact constraintwelding deformation
赵衍华. 铝合金的搅拌摩擦焊接[M]. 北京:中国宇航出版社,2009.
ZHAO Yanhua. Friction Stir Welding of Aluminum Alloy[M]. Beijing: China Aerospace Press, 2009.
孙宜华,杜良. 搅拌摩擦焊的研究进展与应用[J].新技术新工艺,2011,(6):70-73.
SUN Yihua, DU Liang. Development and Application of Friction Stir Welding[J]. New Technology & New Process, 2011(6):70-73.
王春蕊. 海洋平台生活模块铝合金材料的搅拌摩擦焊接技术研究[J]. 化工管理,2015,(18):95-95.
WANG Chunrui. Friction Stir Welding Technology of Aluminum Alloy for Offshore Platform Living Module [J].Chemical Industry Management, 2015(18):95-95.
张田仓,郭德伦,栾国红,等. 固相连接新技术-搅拌摩擦焊技术[J]. 航空制造技术,1999(2):35-36.
ZHANG Tiancang, GUO Delun, LUAN Guohong, et al. A New Technology for Solid Phase Bonding Friction Stir Welding [J]. Aeronautical Manufacturing Technology, 1999(2):35-36.
Ueda Y, Nalacho K. A new measuring method of residual stress with the aid of finite element method of reliability of estinated values[J]. Journal of the Society of Naval Architects of Japan, 1971, 2(2):499-507.
Ueda Y, Nalacho K, Tanigawa W, et al. New measuring method of three in dimensional stress based on theory of inherent strain[J]. Tansactions of the JWRI(Japan Welding Research Institute)(Japan),1979,8(2):89-96.
Ueda Y, Tanigawa W. Prediction of residual stresses in butt welded plates using inherent strains[J]. Journal of Materials Processing Technobgy, 1993, 115(10):417-423.
Yuan M G, Ueda Y. Prediction of residual stresses in welded T- and I joints using inherent strains[J]. Journal of Materials Processing Technology, 1996, 118(4):229-234.
Dean Deng, WeiLiang. Numerical simulation of welding distortion in large structures[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(45-48):4613-4627.
Dean Deng, WeiLiang. FEM prediction of buckling distortion induced by welding in the plate panel structures[J]. Computational Materials Science, 2008, 43(4):591-607.
李鸿. 基于固有应变的船体分段焊接变形预测[D]. 黑龙江:哈尔滨工程大学,2005.
LI Hong. Welding Deformation Prediction of Hull Sections based on Inherent Strain[D]. Harbin: Harbin Engineering University, 2005.
周晶,常保华,张骅,等. 采用固有应变法预测铝合金焊接变形[J].焊接技术,2010,39(06):6-11.
ZHOU Jing, CHANG Baohua, ZHANG Hua, et al. A New Method for Predicting Welding Deformation of Aluminum Alloy[J]. Welding Technology, 2010, 39 (06):6-11.
高博,陈章兰,李昆鹏,等. 基于等效载荷法的复杂结构焊接变形预测[J]. 焊接技术,2013,42(9):64-67.
GAO Bo, CHEN Zhanglan, LI Kunpeng, et al. Welding Deformation Prediction of Complex Structures based on Equivalent Load Method[J]. Welding Technology, 2013, 42 (9):64-67.
汪建华,陆皓,魏良武. 固有应变有限元法预测焊接变形理论及其应用[J].焊接学报,2002,23(6):36-40.
WANG Jianhua, LU Hao, WEI Liangwu. The Prediction of Welding Deformation by Inherent Strain Finite Element Method and its Application[J]. Transactions of the China Welding Institution, 2002, 23(6):36-40.
侯志刚. 薄板结构焊接变形的预测与控制[D]. 湖北:华中科技大学, 2005.
HOU Zhigang. Prediction and Control of Welding Deformation of Thin Plate Structure[D]. Hubei: Huazhong University of Science and Technology, 2005.
梁伟,郑颖,邓德安,等. 外拘束对铝合金薄板结构焊接变形的影响[J].机械工程学报,2021,57(6):71-72.
LIANG Wei, ZHENG Ying, DENG Dean, et al. Effect of External Constraint on Welding Deformation of Aluminum Alloy Sheet[J]. Chinese Journal of Mechanical Engineering, 2021, 57(6):71-72.
徐济近,陈立功. 基于固有应变法筒体对接多道焊焊接变形的预测[J]. 焊接学报, 2007, 28(1): 77-80.
XU Jijing, CHEN Ligong. Prediction of Welding Deformation in Multi-pass Welding of Cylinder Butt based on Natural Strain Method[J]. Transactions of the China Welding Institution, 2007, 28(1): 77-80.
迟哲,杨鑫华. 基于固有应变法的地铁侧墙FSW焊接变形仿真[J]. 电焊机,2017,10(47):1-7.
CHI Zhe, YANG Xinhua. Deformation Simulation of FSW Welding of Subway Side Wall Based on Inherent Strain Method[J]. Electric Welding Machine, 2017, 10(47):1-7.
罗宇,鲁华益,谢雷,等. Tendon Force的概念及计算方法[J]. 造船技术,2004(04):38-40.
LUO Yu, LU Huayi, XIE Lei, et al. An Overview of Tendon Force and its Applications[J]. Shipbuilding Technology, 2004(04):38-40.
Deng D, Murakawa H, Ling W. Numerical Simulation or Welding Distortion in Large Structures[J]. Computer Methods In Applied Mechanics And Engineering, 2007, 196(45-48): 4613-4627.
Hyung-Suk Mun, Sung-Il Seo. Welding strain analysis of friction stir-welded aluminum alloy structures using inherent strain-based equivalent loads[J]. Journal of Mechanical Science and Technology, 2013, 27(9):2775-2782.
刘玉龙. 轨道车辆板材搅拌摩擦焊接残余状态仿真研究[D]. 辽宁:大连交通大学, 2018.
LIU Yulong. Simulation of Residual State of Friction Stir Welding for Rail Vehicle Plate[D]. Liaoning: Dalian Jiaotong University, 2018.
Vuyst T, Dealvise L D. Inverse Analysis using a Genetic Algorithm for the Finite Element Modeling of Friction Stir Welding[C]. Proc. 5th Int. Symp On Friction Stir Welding. USA: ParkCity, 2004.
张正伟. 搅拌摩擦焊接构件残余状态和疲劳寿命研究[D]. 辽宁:大连理工大学, 2014.
ZHANG Zhengwei. Residual State and Fatigue Life of Friction Stir Welded Components[D]. Liaoning: Dalian University of Technology, 2014.
付强. 铝合金薄板搅拌摩擦焊残余应力及失稳变形的预测研究[D]. 天津:天津大学, 2010.
FU Qiang, Effect of Friction Stir Welding on the Residual Stress and Instability Deformation of Aluminum Alloy[D]. Tianjin: Tianjin University, 2010.
编辑部网址:http://www.71dhj.comhttp://www.71dhj.com
相关作者
相关机构