激光修复技术研究进展综述及其在核电领域的应用前景分析
Review on Laser Repairing Technique and Its Potential Applications in Nuclear Power Industry
- 2022年52卷第1期 页码:77-88
DOI: 10.7512/j.issn.1001-2303.2022.01.10
扫 描 看 全 文
扫 描 看 全 文
周鼎,姚迪,罗家成,等.激光修复技术研究进展综述及其在核电领域的应用前景分析[J].电焊机,2021,52(01):77-88.
ZHOU Ding, YAO Di, LUO Jiacheng, et al.Review on Laser Repairing Technique and Its Potential Applications in Nuclear Power Industry[J].Electric Welding Machine, 2022, 52(01): 77-88.
在核电领域,反应堆一回路运行过程中存在大量潜在结构损伤需要进行修复,传统修复方法成本较高,对核电站运营的经济性造成了一定影响。激光修复技术是近年来迅速发展的新型结构修复技术,可实现结构损伤智能化、数字化修复。目前在核电领域,激光修复技术的研究与应用尚处于起始阶段,亟待对相关研究进展进行梳理并对其应用前景进行分析。文中充分调研了激光熔凝修复、激光熔覆修复及激光增材修复技术研究进展和实际应用,梳理了激光修复装置的研发进展,发现理论研究已取得较为系统的成果且修复装置具备结构级试件修复能力,为激光修复技术应用研究提供了基础。结合反应堆实际需求,进一步分析了该技术在核电领域的应用前景以及在修复工艺研究、修复性能试验技术研究和修复效能评价方法等领域亟待解决的技术难点。
Laser repairing has been one of the most advanced structural repairing technologies in recent years. In nuclear power industry, plenty of potential structural damage need to be repaired during the operation of nuclear reactors, whereas traditional repairing methods are of low economic efficiency. Laser repairing techniques make it possible to achieve digitized and intellectualized repairing patterns. However, research and applications of laser repairing in the nuclear power industry are still lacking. For this sake, this paper reviews current research progress in laser repairing and its actual applications in various areas. The research and development progress of laser repair device is combed. It is found that the theoretical research has made more systematic achievements, and the repair device has the repair ability of structural specimens, which provides a basis for the application research of laser repair technology. Furthermore, based on the requirements in nuclear power industry, the application prospect of this technology in the field of nuclear power and the technical difficulties to be solved in the fields of repair process research, repair performance test technology research and repair efficiency evaluation method are analyzed.
激光修复研究进展核电应用前景技术难点
laser repairingresearch progressnuclear powerpotential applicationstechnological difficulty
马思远. 球墨铸铁制动盘热疲劳裂纹的激光仿生修复研究[D]. 吉林:吉林大学, 2020.
Ma S Y. Study on Laser Bionic Repair of Thermal Fatigue Cracks in Ductile Iron Brake Discs[D]. Jilin University, 2020.
杨胶溪,贾无名,王欣,等. 激光熔凝处理对Zr-1Nb核燃料包壳组织和性能的影响[J]. 材料工程,2018,46(8):120-126.
J X Yang,W M Jia,X Wang,et al. Effect of Laser Melting Treatment on Microstructure and Properties of Zr-1Nb Nuclear Fuel Cladding[J]. Journal of Materials Engineering,2018, 46(8): 120-126.
高桦,李明,陈德海. 激光熔凝处理修复表面裂纹[J]. 机械强度, 1988, 10(4): 50-52.
H Gao, M Li, D H Chen. Recuperation of Surface Crack by Laser Treatment[J]. Mechanical Strength, 1988, 10(4): 50-52.
高健,刘奋成,刘丰刚. WC-Ni-Co硬质合金表面激光熔凝修复组织与摩擦磨损性能[J]. 表面技术,2021,50(3):171-182.
J Gao, F C Liu, F G Liu. Microstructure and Friction-Wear Properties of WC-Ni-Co Cemented Carbide with Surface Laser Melting[J]. Surface Technology, 2021, 50(3): 171-182.
杨权. 燃气轮机涡轮盘的激光熔覆修复研究[D]. 湖南:湖南工业大学,2020.
Q Yang. Study on Laser Cladding Repair of Gas Turbine Disk[D]. Hunan University of Technology, 2020.
屈海艳. 模具钢表面激光熔覆修复机制及组织与性能的研究[D]. 广东:广东工业大学, 2020.
H Y Qu. Research on Laser Cladding Repair Mechanism and Microstructure and Properties of Die Steel Surface[D]. Guangdong: Guangdong University of Technology, 2020.
李小丽,马剑雄,李萍,等. 3D打印技术及应用趋势[J]. 自动化仪表,2014,35(1):1-5.
X L Li, J X Ma, P Li, et al. 3D Printing Technology and Its Application Trend[J]. Process Automation Instrumentation, 2014, 35(1): 1-5.
T Marazani. Laser Additive Manufacturing Technology for Crack Repairs in Titanium Alloy Components[D]. Johannesburg, South Africa: University of Johannesburg, 2016.
M GAUMANN, C BEZENCON, P CANALIS, et al. SINGLE-CRYSTAL LASER DEPOSITION OF SUP-ERALLOYS:PROCESSING–MICROSTRUCTURE MAPS[J]. Acta Materialia, 2001(49): 1051-1062.
N Wang, S Mokadem, M Rappaz, et al. Solidification cracking of superalloy single- and bi-crystals[J]. Acta Materialia, 2004(52): 3173-3182.
王维. TC4钛合金激光快速修复过程中熔合不良缺陷的评价研究[D]. 陕西:西北工业大学, 2007.
Wang W. Research on Ill Bonding of Ti-6Al-4V Titanium Alloy in Laser Rapid Repair Processing[D]. Northwesten Polytechnical University, 2007.
刘丰刚,林鑫,陈静,等. 激光修复300M超高强度钢冲击韧性及断裂机理[J]. 应用激光,2016,36(6):635-640.
Liu F G, Lin X, Chen J,et al. Fracture Mechanism of Impact Toughness of Laser Repaired 300M Ultra-high Strength Steel[J]. Applied Laser,2016,36(6):635-640.
于新年,孙福权,刘新宇,等. 钛合金表面缺陷的激光熔覆修复研究[J]. 测试与机理分析,2011(16):116-118.
Yu X N, Sun F Q, Liu X Y,et al. Research on Laser Cladding Repairing for Defect on Titanium Alloy Surface[J]. TEST AND MECHANISM ANALYSIS, 2011(16):116-118.
荣鹏,郭嘉琛. 基体取向对激光熔覆修复区域杂晶形成的影响[J]. 中国激光,2021,48(6):0602110.
Rong P, Guo J C. Effect of Substrate Orientation on Formation of Heterocrystals in Laser Cladding Zone[J]. Chinese Journal of Lasers, 2021,48(6):0602110.
韩秀峰,阮雪茜,张露,等. 激光成形修复TA19钛合金组织与性能研究[J].应用激光,2020,40(6):962-967.
Han X F, Ruan X Q, Zhang L, et al. Microstructures and Mechanical Properties of Laser Forming Repair of TA19 Titanium Alloy[J]. Applied Laser, 2020, 40(6):
962-967.
丛大龙. 热作模具激光仿生耦合修复研究、生产试验及设备制造[D]. 吉林:吉林大学,2014.
Cong D L. Research on Hot Working Die Repaired by Laser Boimimetic Coupling Technology, Production Testing and Equipment Manufacturing[D]. Jilin University, 2014.
郄喜望,张美娟,邹纯昱,等. ZTC4激光熔覆修复力学性能及失效分析[J]. 焊接,2020(1):29-42.
QIE X W, Zhang M J, Zou C Y, et al. Mechanical Properties and Failure Analysis of ZTC4 Laser Cladding Repair[J]. Welding & Joining, 2020(1):29-42.
Sun G F, Shen X T, Wang Z D, et al. Laser metal deposition as repair technology for 316L stainless steel:Influence of feeding powder compositions on microstructure and mechanical properties[J]. Optics and Laser Technology, 2019(109):71-83.
韩晨阳,孙耀宁,王国建,等. 不锈钢冷轧辊激光表面修复工艺研究[J]. 应用激光,2020,40(4):598-604.
Han C Y, Sun Y N, Wang G J, et al. Study on Laser Surface Repair Technology Of Stainless Steel Cold Roll[J]. Applied Laser, 2020, 40(4): 598-604.
张可召,何超威,林雨杨,等. 激光熔覆修复5A06铝合金组织及力学性能[J]. 激光与光电子学进展,2020,57(23):231409.
Zhang K Z, He C W, Lin Y Y, et al. Microstructure and Mechanical Properties of 5A06 Aluminum alloy by Laser Cladding Repairing[J]. Laser & Optoelectronics Progress, 2020, 57(23): 231409.
熊征. 激光熔覆强化和修复薄壁型零部件关键技术基础研究[D]. 湖北:华中科技大学,2009.
Xiong Z. Study of Surfaee Strengthening and Repairing Teehnique of Thin Wall Components by Laser Cladding[D]. Hubei: Huazhong University of Science and Tec-hnology, 2009.
殷克平. 激光修复区微裂机理及影响因素研究[D]. 山东:中国石油大学,2013.
Yin K P. Research on Micro-cracking Mechanism of Laser Repairing Area and Influencing Factors[D]. Shandong: China University of Petroleum, 2013.
郭风雷. 激光修复材料本构研究及断裂性能有限元分析[D]. 辽宁:大连理工大学,2020.
Guo F L. Study on the Constitutive Relation and Fracture Properties of Materials Repaired by Laser Based on Finite Element Method[D]. Liaoning: Dalian University of Technology, 2020.
宫新勇. 激光熔覆沉积修复TC11钛合金叶片的基础问题研究[D]. 北京:北京有色金属研究总院,2014.
Gong X Y. Fundamental Research on Repairing of TC11 Titanium Alloy Blades by Laser Cladding Deposition[D]. Beijing: General Research Institute for Nonferrous Metals, 2014.
田应涛. 激光重熔修复镍基合金微裂纹应力应变场的数值模拟[D]. 黑龙江:哈尔滨工业大学, 2006.
Tian Y T. Simulation of Stress and Strain Fields of Laser Re-molten Repair of Ni-based Alloy with Micro-cracks[D]. Heilongjiang: Harbin Institute of Technology, 2006.
Arcella F G, Abbott D H, House M A. Titanium Alloy Structures for Airframe Application by the Laser Forming Process[C]. Altanta, U.S.A.: 41st Structures,Stru-ctural Dynamics, and Materials Conference, 2000: AIAA-2000-1465.
M Griffith. The LENS™ Success Story[J]. Sandia Technology, 2001, 3(3): 9-10.
冯映科. 2250热轧粗轧万向轴的激光熔覆修复研究[J]. 内燃机与配件,2021(8):100-101.
Feng Y K. Research on Laser Cladding Repair of Hot Rolled and Rough Rolled 2250 Cardan Shaft[J]. Internal Combustion Engine & Parts, 2021(8): 100-101.
王冬春,杜锦涛,刘辉,等. 关于钩缓装置激光修复的工艺参数的研究[J]. 中国设备工程, 2021(4):83-85.
Wang D M, Du J T, Liu H, et al. Research on Repairing Parameters of Draft Gears by Laser Repairing[J]. China Plant Engineering, 2021(4):83-85.
王岩新. SUS301L奥氏体不锈钢激光焊缝缺陷修复工艺研究[D]. 吉林:吉林大学, 2021.
Wang Y X. Study on Laser Weld Defect Repair of SUS301L Austenitic Stainless Steel[D]. Jilin University, 2021.
梁栩. U75V钢轨表面激光熔覆增材修复工艺研究[D]. 北京:北京石油化工学院,2020.
Liang Y. Study on Laser Cladding Additive Repair Technology of U75V Rail Surface[D]. Beijing: Beijing Institute of Petrochemical Technology, 2020.
徐进,阳义. 水轮机过流部件现场激光熔覆修复和表面强化涂层应用研究[J]. 大电机技术,2020(6):55-61.
Xu J, Yang Y. The Application Research of Field Laser Cladding Repair and Surface Strengthening Coating in the Flow Passage Parts of Hydraulic Turbine[J]. Large Electric Machine and Hydraulic Turbine, 2020(6):55-61.
李向波. 基于激光熔覆技术的齿面缺陷修复方法研究[D]. 辽宁:大连理工大学,2020.
Li X B. Study on Tooth Surface Defects Repair Method Based on Laser Cladding Technology[D]. Liaoning: Dalian University of Technology, 2020.
杨光,丁林林,王向明,等. 扫描路径对激光修复钛合金残余应力与变形的影响[J]. 红外与激光工程,2015,
44(10):2926-2932.
Yang G, Ding L L, Wang X M, et al. Influence of Scanning Path on Residual Stress and Distortion of Laser Repairing Titanium Alloy[J]. Infrared and Laser Engineering, 2015, 44(10): 2926-2932.
杨光,刘欢欢,周佳平,等. 激光沉积修复某型飞机垂尾梁研究[J]. 红外与激光工程,2017,46(2):0206004.
Yang G, Liu H H , Zhou J P , et al. Research on Laser Deposition Repair Aircraft Vertical Tail Beam[J]. Infrared and Laser Engineering, 2017, 46(2): 0206004.
钦兰云,庞爽,杨光,等. 激光沉积修复ZL114A铝合金的组织及力学性能[J]. 稀有金属材料与工程,2017,
46(6): 1596-1601.
Qin L Y, Pang S, Yang G, et al. Microstructure and Mechanical Properties of Laser Deposition Repaired Cast ZL114A Aluminum Alloy[J]. Rare Metal Materials and Engineering, 2017, 46(6): 1596-1601.
卞宏友,朱明昊,李英,等. 激光沉积修复GH536/GH738合金的组织及力学性能[J]. 中国有色金属学报,2020,30(3):542-549.
H Y Bian, M H Zhu, Y Li, et al. Microstructure and Mechanical Properties of Laser Deposition Repair of GH536/GH738 Superalloy[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(3): 542-549.
朱明昊. GH536/GH738激光沉积修复工艺研究[D]. 辽宁:沈阳航空航天大学,2019.
M H Zhu. Research on GH536/GH738 Laser Deposition Repair Technology[D]. Liaoning: Shenyang Aerospace University, 2019.
梁帅. 金属零件缺陷的激光修复技术研究[D]. 河北:河北科技大学, 2019.
S Liang. Study on Laser Repair Technology of Metal Parts Defects[D]. Hebei: Hebei University of Science and Technology, 2019.
马书泽. 金属表面缺陷修复装置检测系统的开发与研究[D]. 辽宁:大连理工大学, 2020.
S Z Ma. Development and Research of Detection System for Metal Surface Defect Repair Device[D]. Liaoning: Dalian University of Technology, 2020.
吴国强. 便携式裂纹激光修复装置的设计与分析[D]. 辽宁:大连理工大学, 2020.
G Q Wu. Design and Analysis of Crack Portable Laser Repair Device[D]. Liaoning: Dalian University of Tec-hnology, 2020.
房广雷. 激光参数对止裂效果的影响研究[D]. 辽宁:大连理工大学, 2018.
G L Fang. Study on the Effect of Laser Parameters on Laser Repair[D]. Liaoning: Dalian University of Technology, 2018.
王琪. 裂纹尖端激光修复试件疲劳性能研究[D]. 辽宁:大连理工大学, 2019.
Q Wang. Fatigue Performance of Specimens Repaired by Laser at Crack Tip[D]. Liaoning: Dalian University of Technology, 2019.
谭磊,赵建光. 金属3D打印技术核电领域研究现状及应用前景分析[J]. 电焊机, 2019, 49(4): 339-343.
L Tan, J G Zhao. Analysis on the Present Research Situation and Application Prospect of Metal 3D Printing Technology in Nuclear Power Field[J]. Electric Welding Machine, 2019, 49(04): 339-343.
伍浩松,张焰,戴定. 3D核电打印现状及前景[J]. 2017(7):45-47.
Wu S H, Zhang Y, Dai D. 3D Printing in Nuclear Power Industry: the Present and Its Prospect[J]. China Nuclear Industry, 2017(7):45-47.
Oh W J,Lee W J,Kim M S, et al. Repairing additive-
manufactured 316L stainless steel using direct energy deposition[J]. Optics and Laser Technology, 2019(117):6-17.
Liu Z C, Cong W L, Kim H, et al. Feasibility Exploration of Superalloys for AISI 4140 Steel Repairing Using Laser Engineered Net Shaping[J]. Procedia Manufacturing, 2017(10): 912-922.
YU J, SONG Y, LIN X, et al. Compatibility research of laser additive repairing TA15 forgings with Ti6Al4V-xTA15 alloy[J]. J. Cent. South Univ., 2021(28):1015-1027.
李秋歌,林鑫,王杏华,等. 激光增材修复K465高温合金裂纹控制研究[J]. 稀有金属材料与工程,2017,46(4):955-960.
Li Q G, Lin X, Wang X H, et al. Research on the Cracking Control of Laser Additive Repaired K465 Superalloy[J]. Rare Metal Materials and Engineering, 2017, 46(4): 955-960.
应俊龙,巢昺轩,李智勇. TC4钛合金激光增材修复工艺及性能研究[J]. 热加工工艺, 2020(23): 118-121.
Ying J L, Chao B X, Li Z Y. Laser Additive Repairing Technology and Properties of TC4 Titanium Alloy[J]. Hot Working Technology, 2020(23): 118-121.
范朝,程宗辉,张志强,等. 激光增材修复TC6 钛合金工艺性能研究[J]. 电焊机,2020,50(3):115-120.
Fan C, Cheng Z H, Zhang Z Q, et al. Research on the Technological Properties of Laser Additively in Repairing TC6 Titanium Alloy[J]. Electric Welding Machine, 2020, 50(3): 115-120.
Xu X, Ouyang W, Jia S, et al. Cracks Repairing by Using Laser Additive and Subtractive Hybrid Manufacturing Technology[J]. Journal of Manufacturing Science and Engineering, 2020(142): 031006.
Milewski J O, Lewis G K, Thoma D J, et al. Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition[J]. Journal of Materials Processing Technology, 1998(75): 165-172.
B Graf, A Gumenyuk, M Rethmeiera. Laser metal deposition as repair technology for stainless steel and titanium alloys[J]. Physics Procedia, 2012(39): 376-381.
郭辰光,何顺之,岳海涛,等. 矿用链轮激光增材再制造修复[J]. 表面技术,2021,50(5):78-85.
Guo C G, He S Z, Yue H T, et al. Laser Additive Remanufacturing for Mining Sprocket Repair[J]. Surface Technology, 2021, 50(5): 78-85.
王思明,朱红章,陈道斌,等. 舱段裂纹扩展模拟与裂纹的激光增材修复[J]. 兵器材料科学与工程, 2020, 43(3):133-136.
Wang S M, Zhu H Z, Chen D B, et al. Simulation of Cabin Crack Growth and Laser Additive Repair of Crack[J]. Ordnance Material Science and Engineering, 2020, 43(3): 133-136.
陈少华,刘连伟,朱俊杰,等. 激光熔覆技术在推力瓦修复上的应用[J].水电站机电技术,2020,43(10): 11-14.
Chen S H, Liu L W, Zhu J J, et al. Application of Laser Cladding Technology on Reparation of Thrust Pad[J]. Mechanical & Electrical Technique of Hydropower Station, 2020, 43(10): 11-14.
姚喆赫,张操棋,宋其伟,等. 超声辅助激光修复镍基高温合金V形槽[J]. 浙江大学学报(工学版),2021, 55(5):1-9.
Yao Z H, Zhang C Q, Song Q W, et al. Ultrasonic Assisted Laser Repair of V-grooves in Nickel-based Superalloy[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(5): 1-9.
夏国俊,姚喆赫,陈健,等. 激光增材再制造IN939修复区显微组织与拉伸性能研究[J]. 表面技术,2021, 50(2):277-286.
Xia G J, Yao Z H, Chen J, et al. Microstructure and Tensile Properties of IN939 Repaired Zone by Laser Additive Remanufacturing[J]. Surface Technology, 2021, 50(2):277-286.
P V Royen, C Leblois. Dealing with SG corrosion at Ooel 4[J]. Nuclear Engineering lnt., Mar. 1996, 41(500): 25-26.
王运喜,韩超. 利用激光熔覆技术修复核电厂上充泵转子[J]. 电力安全技术,2020,22(1):68-73.
Wang Y X, Han C. Repair of the Charging Pump Rotor with Laser Cladding Technique in Nuclear Power Plant[J]. Electric Safety Technology, 2020, 22(1): 68-73.
杨树春. 反应堆运行阶段的维修策略和方法[J]. 核动力工程,2001,22(5):471-474.
Yang S C. Maintenance Strategy and Methods of Operation Phase for Nuclear Reactor[J]. Nuclear Power Engineering, 2001, 22(5): 471-474.
赵建仓,朱平,鲁立. 核电关键敏感设备焊接技术现状及发展趋势[J]. 焊接,2011(1):2-7.
Zhao J C, Zhu P, Lu L. Present Situation and Development Trend of Welding Technology for Key Sensitive Equipment of Nuclear Power Industry[J]. Welding, 2011(1): 2-7.
魏敏,王国珍,轩福贞,等. 核反应堆压力容器接管安全端堆焊修复结构的LBB分析[J]. 核技术,2014,37(1):010603.
Wei M, Wang G Z, Xuan F Z, et al. Leak-before-break Analysis of A Dissimilar Metal Welded Overlay Structure for Connecting Pipe-nozzle of Nuclear Reactor Pressure Vessel to Safe End[J]. Nuclear Technology, 2014, 37(1): 010603.
F Baqué, G Rodriguez, N Jardin, et al. Generation IV nuclear reactors - R&D program to improve sodium-cooled systems inspection[C]. Marseille, France: 1st International Conference on Advancements in Nuclear Instrumentation Measurement Methods & Their Applications. IEEE, 2010.
陈兴东,郭洋,黄滔. 特种焊接技术在核电汽轮机部件修复及再制造方面的应用[J]. 电焊机,2020,50(3):
53-59.
Chen X D, Guo Y, Huang T. Application of special welding technologies in repairing and remanufacturing nuclear power turbine components[J]. Electric Welding Machine, 2020, 50(3):53-59.
F Jadot, F Baque, J P Jeannot, et al. ASTRID sodium cooled fast reactor: Program for improving in service inspection and repair[C]. Ghent, Belgium: 2nd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications. IEEE, 2012.
F Baqué, F Jadot, R Marlier, et al. In Service Inspection and Repair of Sodium cooled ASTRID Prototype[C]. Lisbon, Portugal:4th International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications, 2015.
胡付成. 核电厂控制棒驱动机构管座法兰母材缺陷现场修复[J]. 焊接与切割,2016(20):50-54.
Hu F C. On-site Repairing of Base Metal Defects of Control Rod Drive Mechanism Socket Flange in Nuc-lear Power Plant[J]. Welding and Cutting, 2016(20): 50-54.
相关作者
相关机构