激光修复技术研究进展综述及其在核电领域的应用前景分析
Review on Laser Repairing Technique and Its Potential Applications in Nuclear Power Industry
- 2022年52卷第1期 页码:77-88
DOI: 10.7512/j.issn.1001-2303.2022.01.10
引用
阅读全文PDF
扫 描 看 全 文
扫 描 看 全 文
引用
阅读全文PDF
在核电领域,反应堆一回路运行过程中存在大量潜在结构损伤需要进行修复,传统修复方法成本较高,对核电站运营的经济性造成了一定影响。激光修复技术是近年来迅速发展的新型结构修复技术,可实现结构损伤智能化、数字化修复。目前在核电领域,激光修复技术的研究与应用尚处于起始阶段,亟待对相关研究进展进行梳理并对其应用前景进行分析。文中充分调研了激光熔凝修复、激光熔覆修复及激光增材修复技术研究进展和实际应用,梳理了激光修复装置的研发进展,发现理论研究已取得较为系统的成果且修复装置具备结构级试件修复能力,为激光修复技术应用研究提供了基础。结合反应堆实际需求,进一步分析了该技术在核电领域的应用前景以及在修复工艺研究、修复性能试验技术研究和修复效能评价方法等领域亟待解决的技术难点。
Laser repairing has been one of the most advanced structural repairing technologies in recent years. In nuclear power industry, plenty of potential structural damage need to be repaired during the operation of nuclear reactors, whereas traditional repairing methods are of low economic efficiency. Laser repairing techniques make it possible to achieve digitized and intellectualized repairing patterns. However, research and applications of laser repairing in the nuclear power industry are still lacking. For this sake, this paper reviews current research progress in laser repairing and its actual applications in various areas. The research and development progress of laser repair device is combed. It is found that the theoretical research has made more systematic achievements, and the repair device has the repair ability of structural specimens, which provides a basis for the application research of laser repair technology. Furthermore, based on the requirements in nuclear power industry, the application prospect of this technology in the field of nuclear power and the technical difficulties to be solved in the fields of repair process research, repair performance test technology research and repair efficiency evaluation method are analyzed.
核能是当前清洁能源发展中非常重要的组成部分,我国也正在第三代核电技术的基础上积极开展第四代先进核电技术的研发[
随着激光技术的发展,具有较好的方向性与相干性的激光在各领域获得了广泛应用,例如激光焊接、切割、雕刻、表面处理、表面修复等。激光修复技术利用高能激光对结构损伤进行修复,既适用于精密微细修复又适于大型结构修复,修复速度快、效率高,能耗低,对工件的热量输入小、引起的热变形小。激光修复技术能够规避传统修复技术结合力弱、修复区域难以精确控制等缺点,获得良好的组织和性能;同时能克服对零件复杂程度和修复层厚度的限制。此外,由于激光的焦距和光斑可调,可通过调节激光能量对结构损伤进行定制化修复;也可通过机器人编程生成修复路径,修复自动化程度高、时间短、效率高,从而实现结构损伤智能化、数字化、定制化修复。因此,激光修复技术正逐渐成为反应堆结构损伤快速修复的潜在解决方案。
文中针对当前国内外激光修复技术研究、技术应用以及现有修复装置开展了调研,并结合反应堆设备结构自身特点和损伤特征,分析了激光修复技术在核电领域的应用前景。
自20世纪60年代 Maiman发明第一台红宝石激光器以来,具有较好方向性与相干性的激光在工业领域得到了广泛应用,激光焊接、切割、表面处理等加工工艺应运而生。在激光修复领域,激光熔凝、激光熔覆以及激光增材是目前最为常见的修复技术[
激光表面熔凝修复是利用高能激光束照射金属表面,使得表面温度迅速升高并熔化,停止照射后被照射区域迅速降温而凝固,在快速熔凝的过程中使裂纹得以愈合。当前,激光熔凝技术多用于材料表面改性,例如对Zr-1Nb核燃料包壳组织和性能进行提升[
激光熔覆修复技术是1970年代提出的材料结构修复新技术,也是材料表面改性的一项重要技术。该技术是利用高能量激光束使得合金粉末与基体材料迅速熔化,冷却后在基体表面形成一层复合涂层,以补偿基体材料的性能不足或修复含缺陷的结构[
增材制造(3D打印)技术实现了三维零件的降维成形,能够进行任意复杂形状零件的快速化、智能化和柔性化制造[
由于激光熔凝技术研究相对较少,本文着重对激光熔覆修复和增材修复技术发展现状进行分析。
当前,针对不同的功能材料,各研究机构开展了大量的激光熔覆修复技术研究。瑞士洛桑理工学院Gaumann等[
针对激光熔覆修复后修复区域的力学特性,殷克平[
激光修复技术在缩短结构损伤修复周期方面的应用取得了显著突破。美国AeroMet公司引入激光修复技术将F15战斗机中钛合金机翼梁的检修周期缩短为1周(见
图1 激光熔覆修复技术典型应用
Fig.1 Typical application of laser cladding repair technology
激光修复技术在就地、在线修复方面也得到了广泛应用,尤其是在铁路领域。中车青岛四方车辆研究所采用8620级钢粉为修复粉末材料对列车钩缓装置进行了激光修复;修复工艺研究表明随着激光功率的增大修复区域硬度总体增大,扫描速率的增大导致晶粒细化 [
湖南工业大学运用自主组装的激光熔覆修复系统完成了燃气轮机涡轮盘修复技术研究,考察了激光能量密度对熔覆层的影响,开展了熔覆路径规划与修复程序设计[
图2 湖南工业大学自研激光熔覆修复系统[
Fig.2 Self developed laser cladding repair system of Hunan University of Technology[
图3 沈阳航空航天大学激光修复系统[
Fig.3 Laser repair system of Shenyang University of Aeronautics and Astronautics[
河北科技大学设计了适应零部件现场修复工作的激光修复平台,以三轴运动框架为修复平台作业区域,如
图4 河北科技大学自研激光修复平台[
Fig.4 Self developed laser repair platform of Hebei University of science and technology[
国内现有激光修复装置大多是基于数控系统或者多自由度机械手臂上的大型装置,难以满足便携性、有限空间作业等需求。针对这一问题,大连理工大学研发了便携式金属表面缺陷修复实验装置,主要适用于空间有限、不便于自动化设备操作以及小批量科研试验的使用等场景[
近来年,增材制造(3D打印)技术发展迅速,结合激光修复技术和增材制造理念的激光增材修复技术受到了广泛关注。
当前,增材制造技术已广泛应用于航空、航天、船舶、能源等多个领域,也逐步应用于反应堆结构制造中。中核集团完成了CAP1400型燃料组件的管座样品3D打印,并成功打印了CF3型燃料组件的下管座样品及镍基合金格架样品[
在增材制造基础上发展起来的激光增材修复技术是近年来结构修复领域新兴的研究课题。Oh[
图5 激光增材一体化修复技术方案[
Fig.5 Laser additive integrated repair technical scheme[
增材修复技术目前已经成功应用于工业燃气轮机(IGT)刀口密封的修复、工业维护、维修和大修、高级医用植入物结构制造、卫星制造和钛粉末冶金、注塑和压铸模具[
图6 激光增材修复路径规划[
Fig.6 Path planning of laser additive repair[
此外,在军事领域,王思明等[
虽然激光修复技术已广泛应用于各领域,但在反应堆结构损伤修复中的应用还相对较少。1993年,比利时Doel核电站4号机组蒸汽发生器发生外径应力腐蚀开裂,应用激光技术焊接的套管性能被证明优于原套管,表明激光技术在核工业领域同样具有一定优势,但是此次维修中还未直接利用激光修复技术[
图7 激光增材修复闸阀阀杆[
Fig.7 Repair of gate valve stem by laser additive [
反应堆运行阶段的维修活动,通常按维修性质的不同分为预防性维修和改正性维修。预防性维修是按预定的时间间隔或规定的准则在设备故障前实施维修,以降低设备失效的概率或防止功能退化。改正性维修是设备发生故障后,使设备迅速恢复到能执行规定功能状态所实施的维修[
Jadot等[
此外,当前大量结构损伤难以通过现有规范或技术指导文件获得准确的修复方案。例如,某核电机组控制棒驱动机构管座与耐压壳焊接后,水压试验发生渗漏,但相关设计文件未规定返修方法,经对比分析多个修复方案后最终确定补焊修复及修复参数,修复流程复杂繁琐[
综上所述,激光修复技术在核电领域能够更好地满足反应堆结构损伤快速修复需求。鉴于反应堆结构损伤多为管道焊缝裂纹、小支管开裂或存在于复杂构型设备,应用于核电领域的激光修复平台宜采取便携式修复系统设计,尽量缩小送粉系统和冷却系统体积,增加系统在狭小空间的可达性。相比于激光熔覆修复技术,激光增材修复能够在单一涂层熔覆修复的基础上针对不同裂纹状态设计修复微结构,更加灵活地应对反应堆结构不同形式的损伤或失效。然而,运用激光修复技术对反应堆一回路结构损伤修复也存在许多难点,当前亟待解决的技术难点如下:
(1)反应堆一回路结构损伤修复工艺。
反应堆一回路结构损伤通常存在于复杂构型区域或焊缝接口处,例如CRDM管座贯穿件在J形焊缝处产生裂纹并发生泄漏、蒸发器一次侧U形弯管发生应力腐蚀破裂、蒸发器给水管管嘴发生疲劳或热疲劳破坏等。虽然现有激光修复技术对于简单几何构型结构的修复已有较为成熟的应用,但相关技术还很难直接应用于反应堆一回路的修复。需要结合反应堆一回路典型结构损伤的特性,集中针对曲面结构表面损伤开展激光修复工艺研究,探究不同激光修复工艺下的修复区域微观结构、修复涂层结合特性等,最终形成最优修复参数。
(2)激光修复性能试验研究。
激光修复完成后,修复区域组织结构较基体组织结构发生改变,且热输入导致修复区域和基体之间形成热影响区。由此引入了材料性能非均匀区域,并形成了修复区域-基体界面。因此,激光修复后结构的力学性能需要进一步充分验证。在宏观尺度,必须开展大量的验证试验,包括对修复后结构极限承载能力、失效模式和疲劳寿命等力学性能进行全面验证,并与未损伤结构所对应的力学性能进行对比。由于验证试验种类较多、数量庞大,需要形成高效、简便的验证试验体系。在微观尺度,基于宏观尺度力学性能试验结果,需开展基体-修复区域界面失效演化研究,明确修复区域对结构损伤控制的有效性。
(3)激光修复效能快速评估。
结构完整性是反应堆安全运行过程中最为关心的问题之一。反应堆一回路焊缝结构损伤完成在线修复后,需要进一步对结构修复效能进行评定以确保安全性,而目前针对修复后结构的快速评估方法还未建立。
原因之一是修复效能评估的理论方法还不成熟。修复后结构仍可视为含缺陷(修复区域)结构,可通过完整性评估方法量化激光修复效能。当前,结构完整性评估主要基于断裂力学理论。随着断裂力学的发展,根据J积分断裂参量(与路径无关的力学参量积分)的评定方法被广泛采用,不仅可评判管道所含裂纹的启裂, 而且还可以进行裂纹扩展的计算。然而,激光修复后修复区域材料特性与基体材料特性不再一致,J积分不再具有路径无关特性。需进一步考虑如何在非均匀区域进行J积分计算,从而从理论方法层面建立修复效能的评估方法。
此外,当前结构修复安全性评估主要依靠多种现场检测手段,评估周期较长,还未发展出快速评估方法。鉴于激光修复可实现数字化修复控制,可将相关修复参数作为输入,通过编写评估计算程序并调用有限元仿真软件,实现修复效能快速化评估,极大地缩短评估周期。
激光修复技术在当前结构损伤修复中得到越来越多的应用,并在核电领域表现出广阔的应用前景。文中总结了激光熔凝、激光熔覆和激光增材修复技术的研究现状,重点阐述了激光熔覆和增材修复技术的发展现状、技术应用实例和装置研制情况,并分析了激光修复技术在核电领域的应用前景和当前亟待解决的技术难点。技术进展总结表明,激光熔凝修复技术适用于微小裂纹修复,对尺寸较大裂纹修复效果不明显;激光熔覆修复技术理论研究较为深入,并且已成功应用于机械制造与维修、航空航天、化工、军工等多个领域;激光增材修复技术结合了增材制造的先进理念,具有很大的潜在优势。应用前景分析发现,激光修复在反应堆结构损伤修复中的应用还相对较少,激光修复技术的引入可以整合原有修复方法的多种工序,通过不同能量的激光完成多重功能,从而实现一体化的修复过程。技术难度分析表明,激光修复技术在实现成熟应用前,还需要重点攻克修复工艺研究、修复结构力学性能试验技术及修复效能评估方法等问题。
马思远. 球墨铸铁制动盘热疲劳裂纹的激光仿生修复研究[D]. 吉林:吉林大学, 2020. [百度学术]
Ma S Y. Study on Laser Bionic Repair of Thermal Fatigue Cracks in Ductile Iron Brake Discs[D]. Jilin University, 2020. [百度学术]
杨胶溪,贾无名,王欣,等. 激光熔凝处理对Zr-1Nb核燃料包壳组织和性能的影响[J]. 材料工程,2018,46(8):120-126. [百度学术]
J X Yang,W M Jia,X Wang,et al. Effect of Laser Melting Treatment on Microstructure and Properties of Zr-1Nb Nuclear Fuel Cladding[J]. Journal of Materials Engineering,2018, 46(8): 120-126. [百度学术]
高桦,李明,陈德海. 激光熔凝处理修复表面裂纹[J]. 机械强度, 1988, 10(4): 50-52. [百度学术]
H Gao, M Li, D H Chen. Recuperation of Surface Crack by Laser Treatment[J]. Mechanical Strength, 1988, 10(4): 50-52. [百度学术]
高健,刘奋成,刘丰刚. WC-Ni-Co硬质合金表面激光熔凝修复组织与摩擦磨损性能[J]. 表面技术,2021,50(3):171-182. [百度学术]
J Gao, F C Liu, F G Liu. Microstructure and Friction-Wear Properties of WC-Ni-Co Cemented Carbide with Surface Laser Melting[J]. Surface Technology, 2021, 50(3): 171-182. [百度学术]
杨权. 燃气轮机涡轮盘的激光熔覆修复研究[D]. 湖南:湖南工业大学,2020. [百度学术]
Q Yang. Study on Laser Cladding Repair of Gas Turbine Disk[D]. Hunan University of Technology, 2020. [百度学术]
屈海艳. 模具钢表面激光熔覆修复机制及组织与性能的研究[D]. 广东:广东工业大学, 2020. [百度学术]
H Y Qu. Research on Laser Cladding Repair Mechanism and Microstructure and Properties of Die Steel Surface[D]. Guangdong: Guangdong University of Technology, 2020. [百度学术]
李小丽,马剑雄,李萍,等. 3D打印技术及应用趋势[J]. 自动化仪表,2014,35(1):1-5. [百度学术]
X L Li, J X Ma, P Li, et al. 3D Printing Technology and Its Application Trend[J]. Process Automation Instrumentation, 2014, 35(1): 1-5. [百度学术]
T Marazani. Laser Additive Manufacturing Technology for Crack Repairs in Titanium Alloy Components[D]. Johannesburg, South Africa: University of Johannesburg, 2016. [百度学术]
M GAUMANN, C BEZENCON, P CANALIS, et al. SINGLE-CRYSTAL LASER DEPOSITION OF SUP-ERALLOYS:PROCESSING–MICROSTRUCTURE MAPS[J]. Acta Materialia, 2001(49): 1051-1062. [百度学术]
N Wang, S Mokadem, M Rappaz, et al. Solidification cracking of superalloy single- and bi-crystals[J]. Acta Materialia, 2004(52): 3173-3182. [百度学术]
王维. TC4钛合金激光快速修复过程中熔合不良缺陷的评价研究[D]. 陕西:西北工业大学, 2007. [百度学术]
Wang W. Research on Ill Bonding of Ti-6Al-4V Titanium Alloy in Laser Rapid Repair Processing[D]. Northwesten Polytechnical University, 2007. [百度学术]
刘丰刚,林鑫,陈静,等. 激光修复300M超高强度钢冲击韧性及断裂机理[J]. 应用激光,2016,36(6):635-640. [百度学术]
Liu F G, Lin X, Chen J,et al. Fracture Mechanism of Impact Toughness of Laser Repaired 300M Ultra-high Strength Steel[J]. Applied Laser,2016,36(6):635-640. [百度学术]
于新年,孙福权,刘新宇,等. 钛合金表面缺陷的激光熔覆修复研究[J]. 测试与机理分析,2011(16):116-118. [百度学术]
Yu X N, Sun F Q, Liu X Y,et al. Research on Laser Cladding Repairing for Defect on Titanium Alloy Surface[J]. TEST AND MECHANISM ANALYSIS, 2011(16):116-118. [百度学术]
荣鹏,郭嘉琛. 基体取向对激光熔覆修复区域杂晶形成的影响[J]. 中国激光,2021,48(6):0602110. [百度学术]
Rong P, Guo J C. Effect of Substrate Orientation on Formation of Heterocrystals in Laser Cladding Zone[J]. Chinese Journal of Lasers, 2021,48(6):0602110. [百度学术]
韩秀峰,阮雪茜,张露,等. 激光成形修复TA19钛合金组织与性能研究[J].应用激光,2020,40(6):962-967. [百度学术]
Han X F, Ruan X Q, Zhang L, et al. Microstructures and Mechanical Properties of Laser Forming Repair of TA19 Titanium Alloy[J]. Applied Laser, 2020, 40(6): [百度学术]
962-967. [百度学术]
丛大龙. 热作模具激光仿生耦合修复研究、生产试验及设备制造[D]. 吉林:吉林大学,2014. [百度学术]
Cong D L. Research on Hot Working Die Repaired by Laser Boimimetic Coupling Technology, Production Testing and Equipment Manufacturing[D]. Jilin University, 2014. [百度学术]
郄喜望,张美娟,邹纯昱,等. ZTC4激光熔覆修复力学性能及失效分析[J]. 焊接,2020(1):29-42. [百度学术]
QIE X W, Zhang M J, Zou C Y, et al. Mechanical Properties and Failure Analysis of ZTC4 Laser Cladding Repair[J]. Welding & Joining, 2020(1):29-42. [百度学术]
Sun G F, Shen X T, Wang Z D, et al. Laser metal deposition as repair technology for 316L stainless steel:Influence of feeding powder compositions on microstructure and mechanical properties[J]. Optics and Laser Technology, 2019(109):71-83. [百度学术]
韩晨阳,孙耀宁,王国建,等. 不锈钢冷轧辊激光表面修复工艺研究[J]. 应用激光,2020,40(4):598-604. [百度学术]
Han C Y, Sun Y N, Wang G J, et al. Study on Laser Surface Repair Technology Of Stainless Steel Cold Roll[J]. Applied Laser, 2020, 40(4): 598-604. [百度学术]
张可召,何超威,林雨杨,等. 激光熔覆修复5A06铝合金组织及力学性能[J]. 激光与光电子学进展,2020,57(23):231409. [百度学术]
Zhang K Z, He C W, Lin Y Y, et al. Microstructure and Mechanical Properties of 5A06 Aluminum alloy by Laser Cladding Repairing[J]. Laser & Optoelectronics Progress, 2020, 57(23): 231409. [百度学术]
熊征. 激光熔覆强化和修复薄壁型零部件关键技术基础研究[D]. 湖北:华中科技大学,2009. [百度学术]
Xiong Z. Study of Surfaee Strengthening and Repairing Teehnique of Thin Wall Components by Laser Cladding[D]. Hubei: Huazhong University of Science and Tec-hnology, 2009. [百度学术]
殷克平. 激光修复区微裂机理及影响因素研究[D]. 山东:中国石油大学,2013. [百度学术]
Yin K P. Research on Micro-cracking Mechanism of Laser Repairing Area and Influencing Factors[D]. Shandong: China University of Petroleum, 2013. [百度学术]
郭风雷. 激光修复材料本构研究及断裂性能有限元分析[D]. 辽宁:大连理工大学,2020. [百度学术]
Guo F L. Study on the Constitutive Relation and Fracture Properties of Materials Repaired by Laser Based on Finite Element Method[D]. Liaoning: Dalian University of Technology, 2020. [百度学术]
宫新勇. 激光熔覆沉积修复TC11钛合金叶片的基础问题研究[D]. 北京:北京有色金属研究总院,2014. [百度学术]
Gong X Y. Fundamental Research on Repairing of TC11 Titanium Alloy Blades by Laser Cladding Deposition[D]. Beijing: General Research Institute for Nonferrous Metals, 2014. [百度学术]
田应涛. 激光重熔修复镍基合金微裂纹应力应变场的数值模拟[D]. 黑龙江:哈尔滨工业大学, 2006. [百度学术]
Tian Y T. Simulation of Stress and Strain Fields of Laser Re-molten Repair of Ni-based Alloy with Micro-cracks[D]. Heilongjiang: Harbin Institute of Technology, 2006. [百度学术]
Arcella F G, Abbott D H, House M A. Titanium Alloy Structures for Airframe Application by the Laser Forming Process[C]. Altanta, U.S.A.: 41st Structures,Stru-ctural Dynamics, and Materials Conference, 2000: AIAA-2000-1465. [百度学术]
M Griffith. The LENS™ Success Story[J]. Sandia Technology, 2001, 3(3): 9-10. [百度学术]
冯映科. 2250热轧粗轧万向轴的激光熔覆修复研究[J]. 内燃机与配件,2021(8):100-101. [百度学术]
Feng Y K. Research on Laser Cladding Repair of Hot Rolled and Rough Rolled 2250 Cardan Shaft[J]. Internal Combustion Engine & Parts, 2021(8): 100-101. [百度学术]
王冬春,杜锦涛,刘辉,等. 关于钩缓装置激光修复的工艺参数的研究[J]. 中国设备工程, 2021(4):83-85. [百度学术]
Wang D M, Du J T, Liu H, et al. Research on Repairing Parameters of Draft Gears by Laser Repairing[J]. China Plant Engineering, 2021(4):83-85. [百度学术]
王岩新. SUS301L奥氏体不锈钢激光焊缝缺陷修复工艺研究[D]. 吉林:吉林大学, 2021. [百度学术]
Wang Y X. Study on Laser Weld Defect Repair of SUS301L Austenitic Stainless Steel[D]. Jilin University, 2021. [百度学术]
梁栩. U75V钢轨表面激光熔覆增材修复工艺研究[D]. 北京:北京石油化工学院,2020. [百度学术]
Liang Y. Study on Laser Cladding Additive Repair Technology of U75V Rail Surface[D]. Beijing: Beijing Institute of Petrochemical Technology, 2020. [百度学术]
徐进,阳义. 水轮机过流部件现场激光熔覆修复和表面强化涂层应用研究[J]. 大电机技术,2020(6):55-61. [百度学术]
Xu J, Yang Y. The Application Research of Field Laser Cladding Repair and Surface Strengthening Coating in the Flow Passage Parts of Hydraulic Turbine[J]. Large Electric Machine and Hydraulic Turbine, 2020(6):55-61. [百度学术]
李向波. 基于激光熔覆技术的齿面缺陷修复方法研究[D]. 辽宁:大连理工大学,2020. [百度学术]
Li X B. Study on Tooth Surface Defects Repair Method Based on Laser Cladding Technology[D]. Liaoning: Dalian University of Technology, 2020. [百度学术]
杨光,丁林林,王向明,等. 扫描路径对激光修复钛合金残余应力与变形的影响[J]. 红外与激光工程,2015, [百度学术]
44(10):2926-2932. [百度学术]
Yang G, Ding L L, Wang X M, et al. Influence of Scanning Path on Residual Stress and Distortion of Laser Repairing Titanium Alloy[J]. Infrared and Laser Engineering, 2015, 44(10): 2926-2932. [百度学术]
杨光,刘欢欢,周佳平,等. 激光沉积修复某型飞机垂尾梁研究[J]. 红外与激光工程,2017,46(2):0206004. [百度学术]
Yang G, Liu H H , Zhou J P , et al. Research on Laser Deposition Repair Aircraft Vertical Tail Beam[J]. Infrared and Laser Engineering, 2017, 46(2): 0206004. [百度学术]
钦兰云,庞爽,杨光,等. 激光沉积修复ZL114A铝合金的组织及力学性能[J]. 稀有金属材料与工程,2017, [百度学术]
46(6): 1596-1601. [百度学术]
Qin L Y, Pang S, Yang G, et al. Microstructure and Mechanical Properties of Laser Deposition Repaired Cast ZL114A Aluminum Alloy[J]. Rare Metal Materials and Engineering, 2017, 46(6): 1596-1601. [百度学术]
卞宏友,朱明昊,李英,等. 激光沉积修复GH536/GH738合金的组织及力学性能[J]. 中国有色金属学报,2020,30(3):542-549. [百度学术]
H Y Bian, M H Zhu, Y Li, et al. Microstructure and Mechanical Properties of Laser Deposition Repair of GH536/GH738 Superalloy[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(3): 542-549. [百度学术]
朱明昊. GH536/GH738激光沉积修复工艺研究[D]. 辽宁:沈阳航空航天大学,2019. [百度学术]
M H Zhu. Research on GH536/GH738 Laser Deposition Repair Technology[D]. Liaoning: Shenyang Aerospace University, 2019. [百度学术]
梁帅. 金属零件缺陷的激光修复技术研究[D]. 河北:河北科技大学, 2019. [百度学术]
S Liang. Study on Laser Repair Technology of Metal Parts Defects[D]. Hebei: Hebei University of Science and Technology, 2019. [百度学术]
马书泽. 金属表面缺陷修复装置检测系统的开发与研究[D]. 辽宁:大连理工大学, 2020. [百度学术]
S Z Ma. Development and Research of Detection System for Metal Surface Defect Repair Device[D]. Liaoning: Dalian University of Technology, 2020. [百度学术]
吴国强. 便携式裂纹激光修复装置的设计与分析[D]. 辽宁:大连理工大学, 2020. [百度学术]
G Q Wu. Design and Analysis of Crack Portable Laser Repair Device[D]. Liaoning: Dalian University of Tec-hnology, 2020. [百度学术]
房广雷. 激光参数对止裂效果的影响研究[D]. 辽宁:大连理工大学, 2018. [百度学术]
G L Fang. Study on the Effect of Laser Parameters on Laser Repair[D]. Liaoning: Dalian University of Technology, 2018. [百度学术]
王琪. 裂纹尖端激光修复试件疲劳性能研究[D]. 辽宁:大连理工大学, 2019. [百度学术]
Q Wang. Fatigue Performance of Specimens Repaired by Laser at Crack Tip[D]. Liaoning: Dalian University of Technology, 2019. [百度学术]
谭磊,赵建光. 金属3D打印技术核电领域研究现状及应用前景分析[J]. 电焊机, 2019, 49(4): 339-343. [百度学术]
L Tan, J G Zhao. Analysis on the Present Research Situation and Application Prospect of Metal 3D Printing Technology in Nuclear Power Field[J]. Electric Welding Machine, 2019, 49(04): 339-343. [百度学术]
伍浩松,张焰,戴定. 3D核电打印现状及前景[J]. 2017(7):45-47. [百度学术]
Wu S H, Zhang Y, Dai D. 3D Printing in Nuclear Power Industry: the Present and Its Prospect[J]. China Nuclear Industry, 2017(7):45-47. [百度学术]
Oh W J,Lee W J,Kim M S, et al. Repairing additive- [百度学术]
manufactured 316L stainless steel using direct energy deposition[J]. Optics and Laser Technology, 2019(117):6-17. [百度学术]
Liu Z C, Cong W L, Kim H, et al. Feasibility Exploration of Superalloys for AISI 4140 Steel Repairing Using Laser Engineered Net Shaping[J]. Procedia Manufacturing, 2017(10): 912-922. [百度学术]
YU J, SONG Y, LIN X, et al. Compatibility research of laser additive repairing TA15 forgings with Ti6Al4V-xTA15 alloy[J]. J. Cent. South Univ., 2021(28):1015-1027. [百度学术]
李秋歌,林鑫,王杏华,等. 激光增材修复K465高温合金裂纹控制研究[J]. 稀有金属材料与工程,2017,46(4):955-960. [百度学术]
Li Q G, Lin X, Wang X H, et al. Research on the Cracking Control of Laser Additive Repaired K465 Superalloy[J]. Rare Metal Materials and Engineering, 2017, 46(4): 955-960. [百度学术]
应俊龙,巢昺轩,李智勇. TC4钛合金激光增材修复工艺及性能研究[J]. 热加工工艺, 2020(23): 118-121. [百度学术]
Ying J L, Chao B X, Li Z Y. Laser Additive Repairing Technology and Properties of TC4 Titanium Alloy[J]. Hot Working Technology, 2020(23): 118-121. [百度学术]
范朝,程宗辉,张志强,等. 激光增材修复TC6 钛合金工艺性能研究[J]. 电焊机,2020,50(3):115-120. [百度学术]
Fan C, Cheng Z H, Zhang Z Q, et al. Research on the Technological Properties of Laser Additively in Repairing TC6 Titanium Alloy[J]. Electric Welding Machine, 2020, 50(3): 115-120. [百度学术]
Xu X, Ouyang W, Jia S, et al. Cracks Repairing by Using Laser Additive and Subtractive Hybrid Manufacturing Technology[J]. Journal of Manufacturing Science and Engineering, 2020(142): 031006. [百度学术]
Milewski J O, Lewis G K, Thoma D J, et al. Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition[J]. Journal of Materials Processing Technology, 1998(75): 165-172. [百度学术]
B Graf, A Gumenyuk, M Rethmeiera. Laser metal deposition as repair technology for stainless steel and titanium alloys[J]. Physics Procedia, 2012(39): 376-381. [百度学术]
郭辰光,何顺之,岳海涛,等. 矿用链轮激光增材再制造修复[J]. 表面技术,2021,50(5):78-85. [百度学术]
Guo C G, He S Z, Yue H T, et al. Laser Additive Remanufacturing for Mining Sprocket Repair[J]. Surface Technology, 2021, 50(5): 78-85. [百度学术]
王思明,朱红章,陈道斌,等. 舱段裂纹扩展模拟与裂纹的激光增材修复[J]. 兵器材料科学与工程, 2020, 43(3):133-136. [百度学术]
Wang S M, Zhu H Z, Chen D B, et al. Simulation of Cabin Crack Growth and Laser Additive Repair of Crack[J]. Ordnance Material Science and Engineering, 2020, 43(3): 133-136. [百度学术]
陈少华,刘连伟,朱俊杰,等. 激光熔覆技术在推力瓦修复上的应用[J].水电站机电技术,2020,43(10): 11-14. [百度学术]
Chen S H, Liu L W, Zhu J J, et al. Application of Laser Cladding Technology on Reparation of Thrust Pad[J]. Mechanical & Electrical Technique of Hydropower Station, 2020, 43(10): 11-14. [百度学术]
姚喆赫,张操棋,宋其伟,等. 超声辅助激光修复镍基高温合金V形槽[J]. 浙江大学学报(工学版),2021, 55(5):1-9. [百度学术]
Yao Z H, Zhang C Q, Song Q W, et al. Ultrasonic Assisted Laser Repair of V-grooves in Nickel-based Superalloy[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(5): 1-9. [百度学术]
夏国俊,姚喆赫,陈健,等. 激光增材再制造IN939修复区显微组织与拉伸性能研究[J]. 表面技术,2021, 50(2):277-286. [百度学术]
Xia G J, Yao Z H, Chen J, et al. Microstructure and Tensile Properties of IN939 Repaired Zone by Laser Additive Remanufacturing[J]. Surface Technology, 2021, 50(2):277-286. [百度学术]
P V Royen, C Leblois. Dealing with SG corrosion at Ooel 4[J]. Nuclear Engineering lnt., Mar. 1996, 41(500): 25-26. [百度学术]
王运喜,韩超. 利用激光熔覆技术修复核电厂上充泵转子[J]. 电力安全技术,2020,22(1):68-73. [百度学术]
Wang Y X, Han C. Repair of the Charging Pump Rotor with Laser Cladding Technique in Nuclear Power Plant[J]. Electric Safety Technology, 2020, 22(1): 68-73. [百度学术]
杨树春. 反应堆运行阶段的维修策略和方法[J]. 核动力工程,2001,22(5):471-474. [百度学术]
Yang S C. Maintenance Strategy and Methods of Operation Phase for Nuclear Reactor[J]. Nuclear Power Engineering, 2001, 22(5): 471-474. [百度学术]
赵建仓,朱平,鲁立. 核电关键敏感设备焊接技术现状及发展趋势[J]. 焊接,2011(1):2-7. [百度学术]
Zhao J C, Zhu P, Lu L. Present Situation and Development Trend of Welding Technology for Key Sensitive Equipment of Nuclear Power Industry[J]. Welding, 2011(1): 2-7. [百度学术]
魏敏,王国珍,轩福贞,等. 核反应堆压力容器接管安全端堆焊修复结构的LBB分析[J]. 核技术,2014,37(1):010603. [百度学术]
Wei M, Wang G Z, Xuan F Z, et al. Leak-before-break Analysis of A Dissimilar Metal Welded Overlay Structure for Connecting Pipe-nozzle of Nuclear Reactor Pressure Vessel to Safe End[J]. Nuclear Technology, 2014, 37(1): 010603. [百度学术]
F Baqué, G Rodriguez, N Jardin, et al. Generation IV nuclear reactors - R&D program to improve sodium-cooled systems inspection[C]. Marseille, France: 1st International Conference on Advancements in Nuclear Instrumentation Measurement Methods & Their Applications. IEEE, 2010. [百度学术]
陈兴东,郭洋,黄滔. 特种焊接技术在核电汽轮机部件修复及再制造方面的应用[J]. 电焊机,2020,50(3): [百度学术]
53-59. [百度学术]
Chen X D, Guo Y, Huang T. Application of special welding technologies in repairing and remanufacturing nuclear power turbine components[J]. Electric Welding Machine, 2020, 50(3):53-59. [百度学术]
F Jadot, F Baque, J P Jeannot, et al. ASTRID sodium cooled fast reactor: Program for improving in service inspection and repair[C]. Ghent, Belgium: 2nd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications. IEEE, 2012. [百度学术]
F Baqué, F Jadot, R Marlier, et al. In Service Inspection and Repair of Sodium cooled ASTRID Prototype[C]. Lisbon, Portugal:4th International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications, 2015. [百度学术]
相关作者
相关机构