Research on Strengthening Mechanism and Weldability of Hydropower High Strength Steel
- Vol. 54, Issue 2, Pages: 89-97(2024)
DOI: 10.7512/j.issn.1001-2303.2024.02.14
扫 描 看 全 文
扫 描 看 全 文
范晨阳,包晔峰,韦尚志,等.水电高强钢强化机制与焊接性的研究进展[J].电焊机,2024,54(2):89-97.
FAN Chenyang, BAO Yefeng, WEI Shangzhi, et al.Research on Strengthening Mechanism and Weldability of Hydropower High Strength Steel[J].Electric Welding Machine, 2024, 54(2): 89-97.
水电用钢作为高转速、高效率、大容量水力发电机组的核心材料,其强化机制与焊接特性是当前研究的重点和热点。对近年来水电用钢的发展现状进行概述,深入分析其化学成分、组织性能及各种强化机制对强度的影响。研究发现,细晶强化、固溶强化、位错强化和第二相强化均能有效提高水电用钢的强度。同时,还详细探讨了水电高强钢焊接接头的裂纹倾向、焊缝金属与母材的强韧性匹配机制以及热影响区的性能变化等焊接性特点。这一研究不仅为水电用钢的性能优化提供了理论依据,也为相关领域的技术进步提供了有力支持。
As the core material for high-speed
high-efficiency
and high-capacity hydropower generator units
the strengthening mechanism and welding characteristics of hydropower steel are currently the focus of research. This paper summarizes the recent development of hydropower steel
deeply analyzes its chemical composition
microstructure
and properties
as well as the impact of various strengthening mechanisms on its strength. It is found that fine-grain strengthening
solid-solution strengthening
dislocation strengthening
and second-phase strengthening can effectively enhance the strength of hydropower steel. Additionally
this paper discusses in detail the crack tendency of welded joints of hydropower high-strength steel
the matching mechanism of weld metal and base metal's strength and toughness
as well as the performance changes in the heat-affected zone. This research not only provides theoretical support for optimizing the performance of hydropower steel
but also provides strong support for technological advancements in related fields.
水电用高强钢组织性能强化机制焊接性特点
steel for water and electricitymicrostructure and propertiesstrengthening mechanismsweldability characteristics
普理查德·S,谭振江,赵秋云.可再生能源中水电资源优势分析[J]. 水利水电快报,2016,37(04): 8-9+12.
Richard S, TAN Z J, ZHAO Q Y. Analysis of advantages of hydropower resources in renewable energy[J]. Water Resources and Hydropower Express, 2016, 37 (04): 8-9+12.
Kumar R, Singal S K. Penstock material selection in small hydropower plants using MADM methods[J]. Renewable & Sustainable Energy Reviews, 2015, 52: 240-255.
Li M, Jiang W L. The application and the problems of high strength steel on penstock in Chinese hydroelectric station[J]. Isij International,2002,42(12):1419-1422.
Su K,Li C,Wu H, et al. Review of the crescent-rib steel bifurcation of hydropower station[J]. Journal of Hydraulic Engineering, 2017, 48(8): 968-976.
Qian Y, Yu W, Wu H, et al. Effect of heat treatment on the m icrostructure and mechanical properties of 1000MPa grade structural steel for construction machinery[J]. Journal of University Science and Technology Beijing,2010,32(5): 599-604.
Chen J, Li C S, Jin X, et al. Effect of Quenching Process on Microstructures and Mechanical Properties of Fe-0.9Mn-0.5Cr-2.4Ni-0.5Mo-C Steel[J]. Journal of Materials Engineering and Performance, 2018, 27(4): 1505-1513.
王青云. 1000 MPa级水电用钢的研究与开发[D]. 辽宁:东北大学, 2019.
WANG Q Y. Research and development of 1000 MPa hydropower steel [D].Liaoning: Northeast University, 2019.
Li C S, Ma B, Li T, et al. Microstructure and Mechanical Properties of 1 000 MPa Ultra-High Strength Hot-Rolled Plate Steel for Coal Mine Refuge Chamber[J]. Acta Metallurgica Sinica-English Letters, 2014, 27(3): 422-429.
陈洁. 800 MPa级水电用钢板调质工艺与组织性能研究[D]. 辽宁:东北大学, 2015.
CHEN J. Research on quenching and tempering process and microstructure and properties of 800MPa steel plate for hydropower[D]. Liaoning: Northeast University, 2015.
田亚强,田耕,郑小平,等. 低碳高强贝氏体钢的研究现状[J]. 钢铁研究学报, 2018, 30(07): 505-514.
TIAN Y Q, TIAN G, ZHENG X P, et al. Research status of low-carbon high-strength bainitic steel[J]. Journal of Iron and Steel Research,2018,30(07):505-514.
方鸿生,刘东雨,徐平光,等. 贝氏体钢的强韧化途径[J]. 机械工程材料, 2001(06): 1-5+41.
FANG H S, LIU D Y, XU P G, et al. Strengthening and Toughening Ways of Bainitic Steel[J]. Mechanical Engineering Materials, 2001 (06): 1-5+41.
崔展娟,陈洪,彭庆淳. 钢中贝氏体的形貌、转变机制和应用的研究进展[J]. 热加工工艺, 2019, 48(02): 32-35.
CUI Z J, CHEN H, PENG Q C. Research progress in morphology, transformation mechanism and application of bainite in steel[J]. Hot working process, 2019, 48 (02): 32-35.
王建泽,康永林,杨善武,等. ULCB钢相变产物粒状与板条状贝氏体组织性能研究[J]. 材料工程, 2006(S1): 252-254+258.
WANG J Z, KANG Y L, YANG S W, et al. Study on microstructure and properties of granular and lath bainite of phase transformation products of ULCB steel[J]. Materials Engineering, 2006(S1): 252-254+258.
Feng L, Wu K, Yu H, et al. Production status and developing tendency of high strength and toughness steel for hydropower station[J]. Journal of Iron and Steel Research, 2020, 32(3): 175-185.
Feng L, Hu F, Qiao W, et al. Microstructure and properties of 150 mm ultra-heavy 07MnCrMoVR hydropower steel[J]. Journal of Iron and Steel Research, 2020, 32(5): 400-405.
孙明君,陈军平,王晓强, 等. 超快冷条件下610 MPa水电钢减量化工业试制[J]. 鞍钢技术, 2013(01): 59-62.
SUN M J, CHEN J P, WANG X Q, et al. The industrial trial production of 610MPa hydropower steel under ultra-fast cooling conditions[J]. Angang Steel Technology, 2013(01): 59-62
李秉军, 李晶, 刘伟健, 等. TMCP生产低碳贝氏体钢中微合金化元素的作用机理研究[J]. 钢铁钒钛, 2013,34(03): 77-82.
LI B J, LI J, LIU W J, et al. Study on the mechanism of microalloying elements in low carbon bainitic steel produced by TMCP[J] Steel, vanadium and titanium, 2013, 34 (03): 77-82.
石德珂. 材料科学基础(第2版)[M]. 北京: 机械工业出版社,2014: 428.
Nakamura Y, Nakajima M, Shimizu T, et al. Fatigue Properties of Solution-treated Type 304 Stainless Steel after Nitriding[C]//11th International Conference on Fracture and Damage Mechanics, 2012: 217-220.
Tiwari G P, Ramanujan R V. The relation between the electron to atom ratio and some properties of metallic systems[J]. Journal of Materials Science,2001,36(2):271-283.
Gao C,Liu B,Pan H, et al. Development and Strengthening Mechanism of 420 MPa Grade Bridge Steel with High Toughness[J]. Journal of Northeastern University. Natural Science, 2018, 39(8): 1123-1126.
张卫攀,管连生,刘红艳,等. 良好低温韧性500 MPa级水电钢关键技术开发[J]. 四川冶金,2021,43(04):42-44.
ZHANG W P, GUAN L S, LIU H Y, et al. Development of key technologies for good low-temperature toughness 500 MPa hydropower steel[J]. Sichuan Metallurgy, 2021, 43(04): 42-44.
杜兵. 厚断面马氏体不锈钢焊接工艺优化及熔敷金属断裂机理[D]. 黑龙江:哈尔滨理工大学, 2014.
DU B. Welding process optimization of thick section martensitic stainless steel and fracture mechanism of deposited metal[D]. Heilongjiang: Harbin University of Technology, 2014.
房玉佩,谢振家,尚成嘉. 感应回火对1 000 MPa级高强度低合金钢碳化物析出行为及韧性的影响[J]. 金属学报, 2014, 50(12): 1413-1420.
FANG Y P, XIE Z J, SHANG C J. Effect of induction tempering on carbide precipitation behavior and toughness of 1000 MPa high strength low alloy steel[J]. Journal of Metals, 2014, 50(12): 1413-1420.
Tang X, Wang X, Zhang Z. Research on Precipitation Behavior and Strengthening Mechanism of Low Carbon Bainitic High Strength Steel[J].Hot Working Technology, 2018, 47(16): 92-96.
王克鲁,鲁世强,李鑫,等. 微合金高强度低碳贝氏体钢中不同强化方式的作用[J]. 机械工程材料, 2009, 33(12): 27-29+49.
WANG K L, LU S Q, LI X, et al. Effect of different strengthening methods in microalloyed high-strength low-carbon bainitic steel[J]. Mechanical Engineering Materials, 2009, 33(12): 27-29+49.
杜一鸣,李胜利,艾新港,等. 第二相粒子强化钢铁材料的研究进展[J].钢铁研究学报,2020,32(08): 683-689.
DU Y M,LI S L,AI X G, et al. Research progress of second phase particle strengthening steel materials[J]. Journal of Iron and Steel Research, 2020,32(08):683-689.
叶建军,王培玉. 新型调质高强钢WH80Q的研制开发[J]. 宽厚板, 2006(01): 35-38.
YE J J, WANG P Y. Development of new quenched and tempered high-strength steel WH80Q[J]. Wide and thick plate, 2006 (01): 35-38.
丁庆丰. 800 MPa级水电钢TMCP工艺及焊接热影响区组织与性能研究[D]. 河北:燕山大学, 2017.
DING Q F. Research on TMCP process and microstructure and properties of welding heat affected zone of 800 MPa hydropower steel[D].Hebei:Yanshan University, 2017
赵雷超,孙斌堂,黄运华,等.热轧态与回火态AH80DB低碳贝氏体钢组织与冲击韧性[J]. 工程科学学报, 2016, 38(03): 357-363.
ZHAO L C, SUN B T, HUANG Y H, et al. Microstructure and impact toughness of AH80DB low carbon bainitic steel as hot rolled and tempered[J]. Journal of Engineering Science, 2016, 38 (03): 357-363.
付延飞. 低合金高强钢的焊接[J]. 矿山机械, 2004(10): 80.
FU Y F. Welding of low-alloy high-strength steel[J]. Mining Machinery, 2004 (10): 80.
罗伟中. 低合金高强钢焊接裂纹分析[J]. 造船技术, 1996(10): 36-38+47.
LUO W Z. Welding crack analysis of low alloy high strength steel[J]. Shipbuilding Technology,1996(10): 36-38+47.
钟远标,何小芳,李金象. Cu、Ni对钢水质量和钢材性能的影响[J]. 南方钢铁, 1999(05): 9-13.
ZHANG Y B, HE X F, LI J X. Effect of Cu and Ni on molten steel quality and steel properties[J]. South Steel, 1999 (05): 9-13.
姜在伟,刘心阳,汪晶杰. 水电工程用800 MPa级高强钢焊接性能研究[J]. 宽厚板, 2022, 28(02): 5-10.
JIANG Z W, LIU X Y, WANG J J. Study on welding performance of 800 MPa high-strength steel for hydropower engineering[J]. Wide and thick plate, 2022, 28 (02): 5-10.
陈松贵,陈阳,乔磊, 等. 箱型梁焊接冷裂纹的预防及控制[J]. 山东化工, 2022, 51(01): 184-186.
CHEN S G, CHEN Y, QIAO L, et al. Prevention and control of cold cracks in box girder welding[J]. Shandong Chemical Industry, 2022, 51(01): 184-186.
苗张木,陶德馨,吴卫国,等. 厚钢板焊缝强度匹配对韧度影响的试验方法[J]. 中国机械工程, 2006(09): 958-962.
MIAO Z M, TAO D X, WU W G, et al. Test method for effect of weld strength matching on toughness of thick steel plate[J]. China Mechanical Engineering, 2006(09): 958-962.
李少华, 尹士科, 刘奇凡. 焊接接头强度匹配和焊缝韧性指标综述[J]. 焊接, 2008(01): 24-27+69.
LI S H, YIN S K, LIU Q F. Overview of strength matching of welded joints and weld toughness index [J]. Welding, 2008(01): 24-27+69.
赵智力,杨建国,方洪渊,等. 高强钢低匹配静载等承载对接接头优化设计[J]. 焊接学报, 2009, 30(06): 103-106+118.
ZHAO Z L, YANG J G, FANG H Y, et al. Optimal design of high-strength steel low-matching static load equal-load butt joint[J]. Journal of Welding, 2009, 30 (06): 103-106+118.
李亚江. 高强钢的焊接[M]. 北京:冶金工业出版社, 2010: 12-106.
彭云,宋亮,赵琳,等. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(04): 601-618.
PENG Y, SONG L, ZHAO L, et al. Research progress in weldability of advanced steel materials[J]. Journal of Metals, 2020, 56(04): 601-618.
马耀芳,王富林,高国建,等. 800 MPa级高强钢的焊接试验研究[J]. 电力建设, 1995(12): 24-31.
MA Y F, WANG F L, GAO G J, et al. Research on welding test of 800MPa high-strength steel[J]. Electric Power Construction, 1995(12): 24-31.
赵洪运,刘甲坤,骆宗安,等. 焊接热输入对800MPa超级钢焊接接头组织性能的影响[J]. 焊接学报, 2011, 32(08): 5-8+113.
ZHAO H Y, LIU J K, LUO Z A, et al. Effect of welding heat input on microstructure and properties of welded joints of 800MPa super steel[J]. Journal of Welding, 2011, 32(08): 5-8+113.
编辑部网址:http://www.71dhj.comhttp://www.71dhj.com
相关作者
相关机构