轨道车辆铝合金长大薄壁脉冲复合磁控高效弧焊工艺研究
High Efficiency Magnetic Control Arc Welding Process of Aluminum Alloy Long and Thin Wall Pulse Composite for Rail Vehicles
- 2024年54卷第9期 页码:14-23
纸质出版日期: 2024-09-25
DOI: 10.7512/j.issn.1001-2303.2024.09.02
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-09-25 ,
移动端阅览
武永寿,韩晓辉,陈姬,等.轨道车辆铝合金长大薄壁脉冲复合磁控高效弧焊工艺研究[J].电焊机,2024,54(9):14-23.
WUYongshou, HAN Xiaohui, CHEN Ji, et al.High Efficiency Magnetic Control Arc Welding Process of AluminumAlloy Long and Thin Wall Pulse Composite for Rail Vehicles[J].Electric Welding Machine, 2024, 54(9): 14-23.
利用外加磁场改善电弧焊焊接工艺,具有成本低、附加耗能少、易操作等优点,已成为当今研究的热点之一。针对高速MIG焊时焊缝成形不良及焊接接头质量差等问题,在焊枪上装配一紧凑型脉冲复合磁场发生器,同时调控电弧和熔滴的左右摆动及前倾行为;并开展不同焊接参数下的铝合金车体长大薄壁型材对接接头焊接工艺试验,以研究高速焊条件下的最佳焊接工艺。研究发现,对于铝合金车体焊缝,励磁参数为8 A、120 Hz,焊接参数为265 A、23.5 V、1.2 m/min时,焊缝成形质量最佳。利用金相显微镜以及背向散射电子衍射(EBSD)技术表征了不同焊接参数下焊接接头的微观组织,分析了外加脉冲复合磁场对焊接接头组织的影响。结果表明,在高速焊接条件下(>1.0 m/min),焊接接头的晶粒相较于常规焊速时明显粗化,且熔合区宽度有所增加。然而,引入脉冲复合磁场后,晶粒尺寸和熔合区宽度均降低至与常规焊速相当的水平。开展不同焊接参数下的焊接接头力学性能测试,结果表明,外加脉冲复合磁场对焊接接头的机械性能具有显著的改善作用,焊缝区的平均硬度提高了21.37%,而接头的平均抗拉强度达到187 MPa,与传统焊接速度时的193 MPa相当接近。在保证焊缝成形质量和接头机械性能的前提下,最终将焊接速度从0.75 m/min提高到1.2 m/min,实现了优质高效的焊接过程。
The use of external magnetic field to improve the arc welding process has the advantages of low cost
low additional energy consumption and easy operation
which has become one of the hot spots in today's research. In order to solve the problems of poor weld forming and poor quality of welded joints during high-speed MIG welding
this paper carried out the welding process test of butt joints of aluminum alloy car body with large and thin wall profiles under different welding parameters to study the optimal welding process under high-speed welding conditions. It is found that for the weld of the aluminum alloy car body
the welding quality is the best when the excitation parameters are 8 A
120 HZ
and the welding parameters are 265A
23.5V
and 1.2 m/min. Metallurgical microscopy and backscatter electron diffraction (EBSD) were used to characterize the microstructure of welded joints under different welding parameters
and the effects of applied pulsed composite magnetic fields on the microstructure of welded joints were analyzed. The results show that under the condition of high-speed welding
the grain of the welded joint is significantly coarser compared with the conventional welding speed
and the width of the fusion zone is increased. However
with the introduction of pulsed composite magnetic fields
both the grain size and the width of the fusion zone are reduced to a level comparable to that of conventional welding. The results show that the mechanical properties of welded joints under different welding parameters are significantly improved
the average hardness of the weld zone is increased by 21.37%
and the average tensile strength of the joint reaches 187MPa
which is quite close to the 193MPa at the traditional welding speed. Under the condition of ensuring the forming quality of the weld and the mechanical properties of the welded joint
the welding speed was finally increased from 0.75m/min to 1.2m/min
and the high-quality and efficient welding process was realized.
铝合金复合磁场励磁参数磁控弧焊微观组织力学性能高效焊接
aluminum alloycomposite magnetic fieldexcitation parametersmagnetron arc weldingmicrostructuremechanical propertieshigh efficiency welding
于鑫. 城市轨道交通“绿智融合”的发展新趋势[J]. 城市轨道交通研究,2023,26(10):3-5.
YU X. The New development trend of "Green and intelligent integration" in urban rail transit[J]. Urban rail Transit Research,2023,26(10):3-5.
钱立新. 轨道交通技术发展分析[J]. 电力机车与城轨车辆,2023,46(06):98-100.
QIAN L X. Analysis on the development of rail transit Technology[J]. Electric Locomotive and Urban Rail Vehicles,2023,46(06):98-100.
韩晓辉,张志毅,李刚卿,等. 轨道客车轻量化材料及其连接技术的发展与展望[J]. 焊接,2020(10):34-42+63.
HAN X H,ZHANG Z Y,LI G Q,et al. Development and Prospect of Lightweight Materials and Connection Technology for Rail Cars[J]. Welding,2020(10):34-42+63.
DING M,YU M,HUA J W,et al. Effect of inclusion on performance of A6N01 aluminum alloy joints[J]. Materials Express,2020,10(9):1395-1403.
张子傲,张知航,黄继华,等. 高速列车铝合金车体焊接工艺研究进展[J]. 轨道交通材料,2023(01):1-7.
ZHANG Z A,ZHANG Z H,HUANG J H,et al. Research progress on Welding technology of Aluminum Alloy body for high-speed train[J]. Materials for Rail Transit,2023(01):1-7.
杭争翔,殷树言,方臣富. AC MIG与DC MIG焊接工艺及控制的分析[J]. 电焊机,2001,31(9):17-21.
HANG Z X,YIN S Y,FANG C F. The comparison of welding technology and control between AC MIG and DC MIG welding[J]. Electric Welding Machine,2001,31(9):17-21.
BAI X W,ZHANG H O,WANG G L. Electromagnetically confined weld-based additive manufacturing[J]. Procedia CIRP,2013,6:515-520.
苏允海,蒋焕文,秦昊,等. 磁场作用下镁合金焊接接头力学性能的变化[J]. 焊接学报,2013,34(4):85-88+100.
SU Y H,JIANG H W,QIN H,et al. Forming characteristics, microstructure and properties of magnesium alloy during TIG welding under magnetic field[J]. Transactions of the China Welding Institution,2013,34(4):85-88+100.
陈树君,蒙丹阳,苏再为,等. 轴向磁场对非熔化极焊接电弧的影响[J]. 焊接学报,2014,35(10):5-8.
CHEN S J,MENG D Y,SU Z W,et al. Effects of longitudinal magnetic field on non-consumable gas shielded arc welding[J]. Transactions of the China Welding Institution,2014,35(10):5-8.
Sidyakin V A,Lyuks D I. Butt welding of pipes with a low-pressure electric arc in a transverse magnetic field[J]. Welding International,2015,29(7):548-553.
WANG L,WU C S,Chen J,et al. Experimental measurement of fluid flow in high-speed GMAW assisted by transverse magnetic field[J]. Journal of Manufacturing Processes,2020,56(A):1193-1200.
樊丁,杨文艳,肖磊,等. 高频交变磁场对大电流GMAW熔滴过渡和飞溅率的影响[J]. 焊接学报,2019,40(07):1-5+161.
FAN D,YANG W,XIAO L,et al. Effect of high frequency longitudinal alternating magnetic field on droplet transfer and spatter rate in high current GMAW welding[J]. Transactions of the China Welding Institution,2019,40(7):1-5.
ZHANG P,LIU Z,YAN H,et al Effect of Longitudinal Magnetic Field on CMT Welding of Al-Alloy[J]. Metals and Materials International,2021,27:5285-5298.
YUE C,Yin A N,Huang D H. Effect of transverse magnetic field on arc characteristics and droplet transfer during laser-MIG hybrid welding of Ti-6Al-4V[J]. Int J Adv Manuf Technol.,2022,118:2481-2495.
Kazufumi Nomura,Yousuke Ogino,Yoshinori Hirata. Shape control of TIG arc plasma by cusp-type magnetic field with permanent magnet[J]. Welding International,2012,26(10):759-764.
WU L J,HAN X H. The study of high-speed MIG welding assisted by compound external magnetic fields for 6N01-T6 aluminum alloy[J]. Journal of Manufacturing Processes,2022,83:576-589.
卢振洋. 焊缝咬边形成机理及高速焊工艺研究[D]. 北京:北京工业大学,2006.
LU Z Y. Research on the mechanism of undercut formation and high speed welding technology[D]. Beijing:Beijing University of Technology,2006.
张以冉. 轨道客车用铝合金的磁控MIG高速焊工艺研究[D]. 山东:山东大学,2021.
ZHANG Y R. Study on Magnetic control MIG High Speed welding Technology of Aluminum Alloy for rail bus [D]. Shandong:Shandong University,2021.
WANG Y W,CHEN J. Investigation of high-deposition-rate directed energy deposited Al-5%Mg alloy via external compound magnetic fields[J]. Additive Manufacturing,2023,61:103299.
韩晓辉. 表层组织状态对6005A铝合金MIG焊接头液化裂纹及疲劳性能影响[J]. 焊接学报,2022,43(5):14-20.
HAN X H. Effect of Surface Layer Microstructure on Liquefaction Crack and Fatigue Properties of 6005A Aluminum Alloy MIG Welded Joint[J]. Transactions of the China Welding Institution,2022,43(5):14-20.
相关作者
相关机构