奥氏体不锈钢薄板激光焊表面张力驱动熔池形成的数值模拟分析
Numerical Simulation of Weld Pool Formation Driven by Surface Tension in Laser Welding of Austenitic Stainless Steel Sheet
- 2024年54卷第6期 页码:87-93
纸质出版日期: 2024-06-25
DOI: 10.7512/j.issn.1001-2303.2024.06.14
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-06-25 ,
移动端阅览
周世杰,段瑞,苏哲,等.奥氏体不锈钢薄板激光焊表面张力驱动熔池形成的数值模拟分析[J].电焊机,2024,54(6):87-93.
ZHOU Shijie, DUAN Rui, SU Zhe, et al.Numerical Simulation of Weld Pool Formation Driven by Surface Tension in Laser Welding of Austenitic Stainless Steel Sheet[J].Electric Welding Machine, 2024, 54(6): 87-93.
为探究奥氏体不锈钢薄板激光焊接过程中表面张力对熔池形状、熔池流速、熔池静压的影响,以期优化焊接工艺并提高焊接质量。基于数值模拟分析方法,建立了移动旋转高斯曲面体热源模型,通过改变Marangoni对流系数来模拟不同表面张力条件,分析其对熔池形成过程、熔池形状、流速及熔池内静压力的影响。模拟结果表明,表面张力是影响熔池形态和内部静压力的关键因素,表面张力指向熔池内部,驱动熔池向中心汇聚,从而促进熔池的形成;表面张力的大小与熔池峰值温度、熔深、深宽比呈负相关,与峰值流速、熔宽、熔池内部静压力呈正相关;铜衬底的加入显著增大了过冷度,加速了熔池的冷却,有助于避开奥氏体不锈钢的敏化温度区间。
To explore the impact of surface tension on the shape
flow rate
and static pressure of the molten pool during the laser welding process of austenitic stainless steel sheets
with the aim of optimizing welding processes and enhancing welding quality. Based on numerical simulation analysis methods
a moving rotating Gaussian curved body heat source model was established. By altering the Marangoni convection coefficient to simulate different surface tension conditions
the effects on the formation process
shape
flow rate
and static pressure within the molten pool were analyzed. The simulation results indicate that surface tension is a key factor affecting the morphology and internal static pressure of the molten pool. Surface tension
pointing towards the interior of the molten pool
drives the pool to converge towards the center
thereby promoting the formation of the molten pool. The magnitude of surface tension is negatively correlated with the peak temperature
penetration depth
and aspect ratio of the molten pool
and positively correlated with the peak flow rate
penetration width
and static pressure within the molten pool. The addition of a copper substrate significantly increases the undercooling
accelerating the cooling of the molten pool and helping to avoid the sensitization temperature range of austenitic stainless steel.
奥氏体不锈钢激光焊表面张力熔池流动熔池形状
austenitic stainless steellaser weldingsurface tensionmolten pool flowmolten pool shape
武传松. 焊接热过程与熔池形态[M]. 北京:机械工业出版社,2007.
任水利,李笑雨. 冷轧双相钢激光焊接工艺优化与数值模拟研究[J]. 铸造技术,2016,37(09):1984-1986+1990.
REN S L,LI X Y. Optimization and Numerical Simulation of Laser Welding Process for Cold Rolled Dual Phase Steel[J]. Foundry Technology,2016,37(09):1984-1986+1990.
霍厚志,王宏. 激光深熔焊熔池形成过程的数值模拟[J].机械工程与自动化,2012(04):6-8.
HUO H Z,WANG H. Numerical Simulation of Laser Deep Penetration Welding[J]. Mechanical Engineering & Automation,2012(04):6-8.
纪东生,周世杰,李云涛,等. 压力容器非线性裂纹补焊及熔池受力分析[J]. 电焊机,2015,45(07):70-74.
JI D S,ZHOU S J,LI Y T,et al. Repair welding of nonlinear cracks in pressure vessels and force analysis of molten pool[J]. Electric Welding Machine,2015,45(07):70-74.
Ye X H,Chen X. Three-dimensional modelling of heat transfer and fluid flow in laser full-penetration welding[J]. Journal of Physics D:Applied Physics,2002,35 (10):1049-1056.
Ribic B,Tsukamoto S,Rai R,et al. Role of surface active elements during keyhole-mode laser welding[J]. Journal of Physics D:Applied Physics,2011,44:485203.
Chang B H,Allen C,Blackburn J,et al. Fluid flow characteristics and porosity behavior in full penetration laser welding of a titanium alloy[J]. Metallurgical and Materials Transactions B,2015,46(2):906-918.
Wang H,Shi Y W,Gong S L. Numerical simulation of laser keyhole welding processes based on control volume methods[J]. Journal of Physics D:Applied Physics,2006,39(21):4722-4730.
Geiger M,Leitz K H,Koch H,et al. A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets[J]. Production Engineering,2009,3(2):127-136.
吴甦,赵海燕,王煜,等. 高能束焊接数值模拟中的新型热源模型[J]. 焊接学报,2004(01):91-94.
WU S,ZHAO H Y,WANG Y,et al. A new heat source model in numerical simulation of high energy beam welding[J]. Transactions of The China Welding Institution,2004,01:91-94.
Kong F,Ma J,Kovacevic R. Numerical and experimental study of thermally induced residual stress in the hybrid laser–GMA welding process[J]. Journal of Materials Processing Technology,2011,211(6): 102-1111.
Abderrazak K,Bannour S,Mhiri H,et al. Numerical and experimental study of molten pool formation during continuous laser welding of AZ91 magnesium alloy[J]. Computational Materials Science, 2009, 44(3): 858-866.
Mikael A B. Infrared Radiation, A Handbook for Applicaitons[M]. New York:Plenum Press,1968.
Zacharia T,David S A,Vitek J M,et al. Weld pool development during GTA and laser beam welding of type 304 stainless steel[J]. Weld J Res,1989,68:499-509.
Wang R,Lei Y,Shi Y. Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet[J]. Optics & Laser Technology,2011,43(4):870-873.
Ma J,Kong F,Kovacevic R. Finite-element thermal analysis of laser welding of galvanized high-strength steel in a zero-gap lap joint configuration and its experimental verification[J]. Materials & Design,2012,36:348-358.
相关作者
相关机构