旋转电弧焊接技术研究进展
Progress in Research on Rotary Arc Welding Technology
- 2024年54卷第1期 页码:95-106
DOI: 10.7512/j.issn.1001-2303.2024.01.16
扫 描 看 全 文
扫 描 看 全 文
黄绍服,彭振,柳建,等.旋转电弧焊接技术研究进展[J].电焊机,2024,54(1):95-106.
HUANG Shaofu, PENG Zhen, LIU Jian, et al.Progress in Research on Rotary Arc Welding Technology[J].Electric Welding Machine, 2024, 54(1): 95-106.
熔焊焊接时会不可避免地出现侧壁不熔、咬边、晶粒粗大等问题,导致接头性能较低。为更好地解决焊接中存在的问题,提出旋转电弧焊接技术。相对于普通焊接,旋转电弧中的旋转电弧耦合力在焊接时对熔池的搅拌破碎效应能加速焊缝中的传质传热,并细化晶粒减小焊缝残余应力,能解决焊接中常见问题,获得优质焊缝并提高焊接接头的使用寿命。主要综述了基于外加磁场、非对称钨极旋转电弧、缆式焊丝熔化极旋转电弧的研究现状,指出目前旋转电弧焊接技术还存在的问题,并对相关技术的应用前景进行展望。
Fusion welding is the most widely used connection method and the most mature welding technology in industrial production. The use of fusion welding welds will inevitably result in problems such as non-melting sidewalls, edge gnawing and coarse grain size, resulting in lower joint performance.In order to better solve the problems in welding, rotary arc welding technology is proposed.Compared with ordinary welding, the rotating arc coupling force in the rotating arc can accelerate the mass and heat transfer in the weld by the stirring and crushing effect on the molten pool during welding. And refine the grain to reduce the residual stress of the weld, can solve the common problems in the welding, to obtain high-quality welds and improve the service life of the welded joints. The article mainly reviews the current research status of welding technology based on applied magnetic field, asymmetric tungsten electrode rotating arc, and cable-type wire melting electrode rotating arc. It points out the problems that still exist in the current rotary arc welding technology, and looks forward to the application prospects of the related technology.
旋转电弧焊接外加磁场非对称钨极旋转电弧缆式焊丝
rotating arc weldingapplied magnetic fieldasymmetric tungsten rotary arccable welding wire
Song J, Kostka A, Veehmayer M, et al. Hierarchical microstructure of explosive joints: Example of titanium to steel cladding[J]. Materials Science & Engineering A, 2011, 528(6):2641-2647.
Lee W B, Jung S B. Effect of Microstructure on Mechanical Properties of Friction-Welded Joints between Ti and AISI 321 StainlessSteel[J]. Materials Transactions, 2004, 45(9):2805-2811.
Kundu S, Sam S, Chatterjee S. Interface microstructure and strength properties of Ti-6Al-4V and microduplex stainless steel diffusion bonded joints[J]. Materials & Design, 2011, 32(5):2997-3003.
He P, Feng J C, Xu W. Mechanical property and fracture characteristic of induction brazed joints of TiAl-based intermetallics to steel 35CrMo with Ag-Cu-Ni-Li filler[J]. Materials Science & Engineering A, 2005, 412(1-2):214-221.
Chen S, Zhang M, Huang J, et al. Microstructures and mechanical property of laser butt welding of titanium alloy to stainless steel[J]. Materials & Design, 2014, 53(1):504-511.
Chu Q, Min Z, Li J, et al. Influence of vanadium filler on the properties of titanium and steel TIG welded joints[J]. Journal of Materials Processing Technology,2017,240:293-304.
潘彦江. 现代焊接技术的种类及应用特征[J]. 农机使用与维修, 2022(10):70-72.
PAN Y J. Types and application characteristics of modern welding technology[J]. Use and Maintenance of Agricultural Machinery, 2022(10): 70-72.
Kim C. Through arc sensing for reciprocating wire feed gas metal arc welding[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2014, 229(9):1557-1565.
Yu Y C, Yang S L, Yin Y, et al. Multi-pass laser welding of thick plate with filler wire by using a narrow gap joint configuration[J]. Journal of Mechanical Science & Technology, 2013, 27(7):2125-2131.
Xie W, Fan C, Yang C, et al. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding[J]. Ultrasonics Sonochemistry, 2016, 29:476-484.
Zhang Q, Zhang B Z, Luo Y, et al. Effect of the Welding Process on Microstructure, Microhardness, and Residual Stresses of Capacitor Discharge Stud Welded Joint[J]. Journal of Manufacturing Science and Engineering, 2021, 144(1):1-23.
Yang T, Gao H, Zhang S, et al. Interface behavior of copper and steel by plasma-MIG hybrid arc welding[J]. Acta MetallurgicaSinica (English Letters), 2013,26:328-332.
Lee H K , Park S H , Kang C Y. Effect of plasma current on surface defects of plasma-MIG welding in cryogenic aluminum alloys[J]. Journal of Materials Processing Technology, 2015,223:203-215.
龙琼,钟云波,余正平,等.外加磁场下焊接技术的研究现状[J]. 中国材料进展,2020,39(6): 472-479.
LONG Q, ZHONG Y B, YU Z P, et al. Research status of welding technology under external magnetic field[J]. China Materials Progress,2020,39(6):472-479.
Xiao L,Fan D,Huang J. Tungsten cathode-arc plasma-weld pool interaction in the magnetically rotated or deflected gas tungsten arc welding configuration[J]. Journal of Manufacturing Processes,2018,32(4):127-137.
Pearce B P,Kerr H W.Grain refinement in magnetically stirred GTA welds of aluminum alloys[J]. Metallurgical & Materials Transactions B,1981,12(3):479-486.
Wang L, Chen J, Wu C, et al. Backward flowing molten metal in weld pool and its influence on humping bead in high-speed GMAW[J]. Journal of Materials Processing Technology,2016,237:342-350.
Wang X, Fan D, Huang J, et al. A unified model of coupled arc plasma and weld pool for double electrodes TIG welding[J]. Journal of Physics D Applied Physics,2014,47(27):275202.
樊丁, 黄自成, 黄健康, 等.考虑金属蒸汽的钨极惰性气体保护焊电弧与熔池交互作用三维数值分析[J].物理学报, 2015, 64(10):300-310.
Fan D,Huang Z C,Huang J K,et al.Three-dimensional numericalanalysis of interaction between arc and pool by considering the behavior of themetal vapor in tungsten inert gas welding[J]. Acta Physica Sinica, 2015, 64(10):300-310.
Xiao L, Fan D, Huang J K. Numerical Study on Arc Plasma Behaviors in GMAW with Applied Axial Magnetic Field[J]. Journal of the Physical Society of Japan, 2019, 88(7):074502.
Chang Y L, Liu M X, Lu L, et al. The Influence of Longitudinal Magnetic Field on the CO2 Arc Shape[J]. Plasma Science & Technology,2015,17(4):231-326.
Xiao L,Fan D, Huang J K, et al. Mild steel metal rotating spray transfer behavior in magnetically controlled gas metal arc welding[J]. Materials Today Communications, 2022, 31: 103352.
Liu Z J,Li Y H,Su Y H.Simulation and analysis of heat transfer and fluid flow characteristics of arc plasma in longitudinal magnetic field-tungsten inert gas hybrid welding[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98:2015-2030.
Yin X, Gou J, Zhang J, et al. Numerical study of arc plasmas and weld pools for GTAW with applied axial magnetic fields[J]. Journal of Physics D Applied Physics, 2012, 45(28):285203-285215.
陈金荣,石永华,占爱文. 纵向磁场对K-TIG焊接电弧形态及焊缝成形的影响[J/OL].热加工工艺,2023(05):25-29+35.
CHEN J R, SHI Y H, ZHAN A W. Effect of longitudinal magnetic field on arc morphology and weld formation in K-TIG welding[J/OL]. Hot Working Process, 2023(05): 25-29+35.
常云龙, 路林, 李英民,等. 磁控TIG高速焊焊缝成形机理[J]. 焊接学报, 2013, 34(6):1-4+113.
CHANG Y L, LU L, LI Y M, et al. Mechanism of weld formation in magnetically controlled TIG high speed welding[J]. Journal of Welding, 2013, 34(6): 1-4+113.
杨蕾,刘畅,杜金红,等. 球墨铸铁与钢的磁控旋转电弧焊接[J]. 热处理, 2022,37(03):18-22+26.
YANG L, LIU C, DU J H, et al. Magnetically controlled rotary arc welding of ductile iron and steel[J]. Heat treatment, 2022,37(03): 18-22+26.
Chen Y, Yin A N, Huang D H. Effect of Transverse Magnetic Field on Arc Characteristics and Droplet Transfer During Laser-MIG Hybrid Welding of Ti-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology, 2021, 118(7-8):2481-2495.
Zhang D K, Yin H Y, Bai W, et al. Forming and weld grain growth behavior of arc stud welding driven by rotating magnetic field[J]. Journal of Manufacturing Processes, 2022,82:138-151.
Nilsen A. Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding[J]. Optics & Laser Technology, 2017, 96:107-116.
Zhu C, Tang X, He Y, et al. Effect of preheating on the defects and microstructure in NG-GMA welding of 5083 Al-alloy[J].Journal of Materials Processing Technology, 2018, 251:214-224.
Wei B, Jia C, Wu W , et al. Stirring effect of the rotating arc on the molten pool during non-axisymmetric tungsten NG-GTAW[J]. Journal of Materials Processing Technology, 2020, 285:116769.
毛志伟, 姜银松, 周少玲,等. 角接接头旋转电弧焊接热源模型温度场模拟[J]. 热加工工艺, 2015, 44(13):166-169.
MAO Z W, JIANG Y S, ZHOU S L, et al. Simulation of temperature field in a heat source model for rotary arc welding of corner joints[J] Hot Working Process, 2015, 44(13): 166-169
吴东, 高延峰, 黄林然. 旋转电弧焊接熔池温度场与流场数值模拟[J]. 热加工工艺, 2018, 47(13):192-195+202.
WU D, GAO Y F, HUANG L R. Numerical Simulation of Temperature Field and Flow Field in Rotating Arc Welding Pool[J]. Hot Working Process, 2018, 47(13):192-195+202.
Duan B, Wang J C,Lu Z H, et al. Parameter Analysis and Optimization of the Rotating Arc NG-GMAW Welding Process[J]. International Journal of Simulation Modelling, 2018,17(1):170-179.
Jia C B,Yan Q,Wei B,et al. Rotating-Tungsten Narrow-Groove GTAW for Thick Plates[J]. Welding Journal, 2018, 97(10):273-285.
Yang C L,Guo N, Lin S B,et al. Application of rotating arc system to horizontal narrow gap welding[J]. Science & Technology of Welding & Joining, 2009, 14(2):172-177.
Guo N,Wang M R,GuoW,et al. Effect of rotating arc process on molten pool control in horizontal welding[J]. Science and Technology of Welding & Joining, 2014, 19(5):385-391.
Guo N,Lin S B, Zhang L,et al. Metal transfer characteristics of rotating arc narrow gap horizontal GMAW[J]. Science and Technology of Welding & Joining, 2009, 14(8):760-764.
Guo N,WangM,GuoW,et al. Study on forming mechanism of appearance defects in rotating arc narrow gap horizontal GMAW[J]. International Journal of Advanced Manufacturing Technology, 2014, 75(1-4):15-20.
Fang C ,Chen Z ,Guoxiang X U, et al. Study on the Process of CTWW CO2 Gas Shielded Welding[J]. Acta Metallurgica Sinica, 2012, 48(11):1299-1305.
Cai X Y, Lin S B, Fan C L, et al. Molten pool behaviour and weld forming mechanism of tandem narrow gap vertical GMAW[J]. Science and Technology of Welding & Joining, 2016, 21(2):124-130.
Xu G, Cao Q, Hu Q, et al. Modelling of bead hump formation in high speed gas metal arc welding[J]. Science & Technology of Welding & Joining, 2016:1-11.
Chen Y, Fang C, Li Q , et al. Droplet formation and motion characteristics in seven-wire rotating arc electrogas welding[J]. International Journal of Advanced Manufacturing Technology, 2020, 107(7-8):1-7.
Chen Y, Fang C F, Yang Z D, et al. A study on sidewall penetration of cable-type welding wire electrogas welding[J]. Welding in the World,2017,61:979-986.
Yang Z,Fang C, Wu M, et al. The mechanisms of arc coupling and rotation in cable-type welding wire CO2 welding[J]. Journal of Materials Processing Technology, 2018, 255:443-450.
Chen Y, Fang C, Yang Z, et al. Arc properties and droplet transfer characteristics in cable-type welding wire electrogas welding[J]. Journal of Manufacturing Processes, 2018, 32(4):506-512.
Fang C, Chen Y, Yang Z,et al. Cable-type welding wire submerged arc surfacing[J]. Journal of Materials Processing Technology, 2017, 249:25-31.
Chen Y, Fang C, Yang Z. et al. Cable-type welding wire arc welding[J]. The lnternational Journal of Advanced Manufacturing Technology,2018,94:835-844.
Zhu Y,Mu W, Cai Y,et al. A novel high-efficient welding technology with rotating arc assisted by laser and its application for cryogenic steels[J]. Journal of manufacturing processes, 2021,68:1134-1146.
Chen Y S, Zhang X S, Li T, et al. Arc rotating behavior of SRA EGW in AH36 steel[J]. Materials and Manufacturing Processes,2020, 35:556-563.
Liu J, Li J, Du X, et al. Microstructure and Mechanical Properties of Wire Arc Additively Manufactured MoNbTaWTi High Entropy Alloys[J].Materials,2021,14(16):4512.
Huang S F, Zeng X L, Du X, et al. Microstructure and mechanical properties of the Nb37.7Mo14.5Ta12.6Ni28.16Cr7.04 multi-principal alloys fabricated by gas tungsten wire arc welding additive manufacturinp[J].Vacuum, 2023,210:111900.
Shen Q K, Kong X D, Chen X Z. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM):Microstructure and mechanical properties[J]. Journal of Materials Science and Technology, 2021, 74: 136-142.
相关文章
相关作者
相关机构