钽与不锈钢异种材料焊接的研究进展
Research Progress of Tantalum and Stainless Steel Heterogeneous Material Welding
- 2023年53卷第1期 页码:63-70
DOI: 10.7512/j.issn.1001-2303.2023.01.10
引用
阅读全文PDF
扫 描 看 全 文
扫 描 看 全 文
引用
阅读全文PDF
钽具有高密度、高熔点以及耐腐蚀等优良性能,但其价格昂贵,因此,与其他金属连接形成复合构件成为了研究的热点。304L不锈钢因其良好的耐热性、耐蚀性、焊接性、热稳定性以及成型性能成为了目前常见的结构材料之一。因此,首先对钽和不锈钢进行了焊接性分析,随后对国内外钽和不锈钢多种焊接工艺的研究成果进行了综述,比较了不同焊接工艺应用于钽钢焊接的优缺点,最后对钽和不锈钢焊接的未来研究方向进行了展望。
Tantalum is widely used in electronics and chemical industries because of its excellent properties such as high density, high melting point and corrosion resistance. However, Ta is not only scarce and unevenly distributed in the earth's crust, but also more difficult to extract, which directly leads to the expensive price of Ta and huge application costs. Therefore, the connection with other metals to form composite components has become a hot spot for research. 304L stainless steel has become one of the common structural materials due to its good heat resistance, corrosion resistance, weldability, thermal stability and forming properties. This research first of all, Ta and 304L stainless steel weldability analysis, followed by a review of welding methods for Ta and stainless steel in recent years, comparing the advantages and disadvantages of different welding methods, and finally the Ta and stainless steel welding methods put forward the prospect.
钽(Ta)具有高密度、高熔点、耐腐蚀、良好的高温强度、热加工性和可焊性优良等特点,在航空航天、武器装备、能源化工装备等领域具有重要的应用价值[
钽与钢的理化性能差异较大,且钽在高温下极易与空气中的氧、氮反应形成脆性化合物等因素大大限制了钽钢复合构件的制造[
钽与不锈钢的焊接属于异种金属焊接,其效果除了会受到材料本身理化性能的影响外,还会受两种母材理化性能差异的影响,主要问题如下:
(1)Ta和Fe的固溶度很小,常温下Ta在α-Fe中的固溶度和Fe在Ta中的固溶度几乎为零,因此在焊接过程中Ta和不锈钢会反应生成金属间化合物,如
图1 Ta-Fe二元相图
Fig.1 Ta-Fe binary phase diagram
图2 Ta-Cr二元相图
Fig.2 Ta-Cr binary phase diagram
(2)Ta和Fe的物理性能差异大。Ta与Fe的部分热物理参数如
金属 | 密度 /(g·cm-3) | 熔点 /℃ | 电阻率(20 ℃) /(μΩ·cm) | 热导率 /(W·cm-1·K-1) | 线膨胀系数 /(10-6·K-1) |
---|---|---|---|---|---|
Ta | 16.60 | 2 980 | 13.5 | 57.55 | 6.5 |
Fe | 7.82 | 1 530 | 10.1 | 78.20 | 12.1 |
(3)Ta在常温下性能稳定,而在高温下对氧、氢、氮非常敏感。加热到200~300 ℃时会轻微氧化,在500 ℃以上会迅速氧化,吸收空气中的氢和氧形成脆性化合物,从而导致焊接接头性能较差。
钎焊是异种金属焊接的常用方法。Ta的熔点高,难以熔化,采用钎焊能够通过添加钎料阻隔Ta、Fe的相互扩散,控制金属间化合物和脆性相的生成,可以有效降低接头连接难度,同时还可缓解Ta和Fe理化性能差异的负面影响。钽钢的钎焊工艺操作简单、成本低廉、设备要求较低,但难点在于钎料的选择及其成分设计。
王妮君等人[
图3 Ta1/Ni-7Cr-5Zr-3Fe-3B-4.5Si/0Cr18Ni9高频钎焊接头组织[
Fig.3 Microstructure of Ta1/Ni-7Cr-5Zr-3Fe-3B-4.5Si/0Cr18Ni9 high-frequency brazing joint [
纪腾飞等人[
由此可见,虽然钎焊的温度较低,加工环境也相对较简单,但焊接接头的强度低于母材的平均强度,钎料的种类以及各项物理参数与接头强度密切相关。同时,接头的耐高温性能普遍不如熔焊接头,目前还难以满足航空航天以及压力容易等领域的强度要求。
电子束焊接目前应用最广泛的是真空电子束焊[
Chen等人[
图4 Ta/1Cr18Ni9Ti接头焊缝区裂纹[
Fig.4 Cracks in weld zone of Ta/1Cr18Ni9Ti joint [
图5 不同厚度Cu夹层的焊接接头形貌[
Fig.5 Weld joint morphology of sandwich with different thickness[
(a)0.4 mm (b)0.7 mm (c)0.9 mm
分析以上文献成果可知,有害相的产生与Ta/Fe金属材料结晶化学性能差异的关系密切,而Cu中间层的性质介于母材之间,在两种金属焊接时起到了很好的过渡作用。显然,电子束焊有着较小的热影响区以及能够通过添加中间层的方式来避免脆性相的产生,适合用于钽与不锈钢的焊接,然而电子束焊工艺复杂,真空室条件对焊件尺寸和形状有很大限制,目前还无法大面积应用于工业生产[
李臻[
邢炜等人[
氩弧焊由于热影响区域较大,工件在修补后常常会造成变形、硬度降低、砂眼等缺陷,在精度以及表面要求较高的领域,氩弧焊还无法满足生产要求[
爆炸焊是利用炸药爆炸产生的巨大冲击波,驱动金属材料发生高速运动和碰撞,从而实现冶金结合的特种焊接技术,迄今为止,爆炸焊已经实现了铜/不锈钢、钛/钢、铜/铝等众多异种金属大厚度、大面积复合,结合强度高、质量好[
为探讨钽箔和低碳钢爆炸复合时波状界面生成机制,缪广红等人[
图6 钽和不锈钢微观界面[
Fig.6 Micro interface of tantalum and stainless steel[
由于潜在的技术问题,例如熔点差异大和金属间化合物的形成,在普通金属上获得高质量的钽涂层仍然是一项具有挑战性的任务。在这项工作中,Ming Yang等人[
图7 Ta-Fe爆炸焊接接头的BSE图像[
Fig.7 BSE image of Ta-Fe explosive welded joint[
(a)波型界面的总体布局;(b)~(d)典型波峰结构的放大图
目前,爆炸焊相较其他焊接方法在工业中的应用较多,主要用于制备涂层以及金属箔的焊接。虽然爆炸焊可实现钽/不锈钢焊接,但爆炸中心及边缘存在未结合区,并且钽/不锈钢爆炸复合工艺复杂,生产成本高且耗时,还存在环境破坏问题。
激光焊与电子束焊相类似,是一种高能束焊接方法,属于热传导型焊接,其特点是激光作用时间短,热影响区小,为无接触焊接,并且可在大气下进行,不需要真空室,也不产生X射线[
MENG[
图 8 不同Cu层间厚度的304SS/Ta接头的EDS映射结果[
Fig.8 EDS mapping results of 304SS/Ta joints with different Cu interlayer thickness[
(a)~(c)0 mm;(d)~(f) 0.2 mm;(g)~(i)0.4 mm;(j)~(l)0.6 mm
冯杉杉[
图9 钢侧焊缝组织[
Fig.9 Microstructure of steel side weld[
(a)、(b)熔合线附近组织;(c)焊缝中部组织;(d)局部放大图
除了上述焊接方法外,还有学者尝试了扩散焊、储能焊等方式进行钽钢焊接。
Masumoto等人[
真空扩散焊对整个焊件进行加热,会对母材性能造成影响,且焊接时间长、效率低,在钽钢焊接中有一定局限性。而储能焊工艺复杂,中间层制备难度大,并且焊后接头断裂形式仍然以脆性断裂为主。
以钽为代表的难熔金属与不锈钢的异种材料连接一直是焊接领域的难题,国内外大量研究学者为了获得良好的钽钢接头开展了大量研究,采用钎焊、电子束焊、氩弧焊、爆炸焊以及激光焊等方法实现了钽与不锈钢的连接。本文从焊接方法的角度对目前钽与不锈钢的焊接研究进行了梳理,分析认为,高能量密度的焊接热源如电子束焊、激光焊更适合用于钽与不锈钢的焊接。目前来看,针对激光焊接钽钢的文献量呈现增长趋势。未来钽与不锈钢连接的研究重点有:
(1)继续深入研究钽钢异种金属焊缝的成形机理。借助数值模拟等方法建立准确的分析模型仿真实验,通过材料计算分析焊缝组织演变规律进而阐明焊缝成形机理。
(2)围绕具体的服役环境分析钽钢焊缝的失效机制,进而有针对性优化焊材、钽、钢的组织成分,以获得高质量焊缝。
(3)针对激光等高质量热源,进一步优化其工艺参数,选择合适的中间层金属,来获得更好的接头性能。
NG C H, MOK E S H, MAN H C. Effect of Ta interlayer on laser welding of NiTi to AISI 316L stainless steel[J]. Journal of Materials Processing Technology, 2015, 226: 69-77. [百度学术]
胡忠武, 李中奎, 张廷杰, 等. 钽及钽合金的新发展和应用[J]. 稀有金属与硬质合金,2003(3):34-36,48. [百度学术]
HU Z W,LI Z K,ZHANG T J,et al. New Developments and Applications of Tantalum and Tantalum Alloys[J]. Rare Metals and Cemented Carbides, 2003(3): 34-36,48. [百度学术]
王佳营, 俞礽安, 李志丹. 三头六臂的“铌”兄“钽”弟——走近稀有金属“铌钽”[J]. 国土资源科普与文化, 2020(02): 14-18. [百度学术]
WANG J Y,YU R A,LI Z D. Niobium and Tantalum -- approaching the rare metal "Niobium and Tantalum"[J]. Scientific and Cultural Popularization of Land and Resources, 2020(02): 14-18. [百度学术]
陈艳, 王飞, 孙靖, 等. 钽的激光选区熔化成形工艺研究[J]. 电焊机, 2021, 51(05): 82-87,119. [百度学术]
CHEN Y,WANG F,SUN J,et al. Study on selective laser melting process of Tantalum[J]. Electric Welding Machine , 2021, 51(05): 82-87,119. [百度学术]
WEI D B, CHEN X H, ZHANG P Z, et al. Plasma surface tantalum alloying on titanium and its corrosion behavior in sulfuric acid and hydrochloric acid[J]. Applied Surface Science, 2018, 441: 448-457. [百度学术]
郭磊, 王志法. 加工方法对钽板力学性能以及织构的影响[J]. 稀有金属与硬质合金, 2005(3): 18-22. [百度学术]
GUO L,WANG Z F. Impact of Processing Methods on the Mechanical Properties and Texture of Ta Slab[J]. Rare Metals and Cemented Carbides, 2005(3): 18-22. [百度学术]
王晖, 张小明, 李来平, 等. 钽及钽合金在工业装备中的应用[J]. 装备制造技术, 2013(8): 115-117. [百度学术]
WANG H,ZHANG X M,LI L P,et al. Application of tantalum and tantalum alloy in industrial equipment[J]. Equipment Manufacturing Technology, 2013(8): 115-117. [百度学术]
MALIUTINA I N, BATAEV A A, BATAEV I A, et al. Explosive Welding of Titanium With Stainless Steel Using Bronze - Tantalum as Interlayer[C]//proceedings of the 9th International Forum on Strategic Technology (IFOST), Coxs Bazar, BANGLADESH, F 2014 [百度学术]
ARIVAZHAGAN N, SINGH S, PRAKASH S, et al. Investigation on AISI 304 austenitic stainless steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc, electron beam and friction welding[J]. Materials & Design, 2011, 32(5): 3036-3050. [百度学术]
李维东, 马金达. 冷变形对304不锈钢组织和性能影响的探讨[C]//全国材料理化测试与产品质量控制学术研讨会, 2002. [百度学术]
唐峰. 热处理工艺对管用304不锈钢组织与性能的影响[D]. 四川: 成都理工大学, 2016. [百度学术]
TANG F. Study on heat treatment process on the organization and performance of 304 stainless steel in pipes[D]. Sichuan: Chengdu University of Technology, 2016. [百度学术]
NIU Y, CHEN M, WANG J, et al. Preparation and thermal shock performance of thick α-Ta coatings by direct current magnetron sputtering (DCMS)[J]. Surface and Coatings Technology, 2017, 321: 19-25. [百度学术]
GREVEY D, VIGNAL V, BENDAOUD I, et al. Microstructural and micro-electrochemical study of a Tantalum-Titanium weld interface[J]. Materials & Design, 2015, 87: 974-985. [百度学术]
姚敬. Laves相TaCr2合金的制备、增韧及高温氧化行为研究[D]. 江苏: 南京航空航天大学, 2018. [百度学术]
YAO J. Research on fabrication, toughening, oxidation behavior of Laves phase TaCr2 alloy[D]. Jiangsu: Nanjing University of Aeronautics and Astronautics, 2018. [百度学术]
王妮君. 钽Ta1与0Cr18Ni9不锈钢的钎焊研究[D]. 陕西: 西安理工大学, 2015. [百度学术]
WANG N J.Research on brazing of Tantalum Ta1 and 0Cr18Ni9 stainless steel plates[D]. Shanxi: Xi’an University of Technology, 2015. [百度学术]
纪腾飞. Ta1钽与S30408不锈钢的炉中钎焊研究 [D]. 陕西: 西安理工大学, 2017. [百度学术]
JI T F. Research on Vacuum Furnace Brazing of Ta1 Tantalum and S30408 stainless steel plates[D]. Shanxi: Xi’an University of Technology, 2017. [百度学术]
王小龙, 朱政强, 谢陈阳. 非晶合金焊接的研究进展 [J]. 焊接技术, 2012, 41(10): 1-6,77. [百度学术]
WANG X L,ZHU Z Q,XIE C Y. Research progress of the amorphous alloy welding[J]. Welding Technology, 2012, 41(10): 1-6,77. [百度学术]
蔡立辉, 于斌, 王廷, 等. 添加Mo-Ti-Zr填充层的钼镧钇合金电子束焊接特性分析[J]. 电焊机, 2020, 50(05): 41-44,49. [百度学术]
CAI L H,YU B,WANG T,et al. Electron beam welding characteristics analysis of Molybdenum-Lanthanum-Yttrium alloy with MoTi-Zrinterlayer[J]. Electric Wel-ding Machine, 2020, 50(05): 41-44,49. [百度学术]
CHEN G, ZHANG B, ZHUANG Y, et al. Microstructure and Properties of Electron Beam Welded Tantalum-to-Stainless Steel Joints[J]. Rare Metal Materials and Engineering, 2013, 42(5): 914-918. [百度学术]
SANG S, LI D, WANG C, et al. Microstructure and mechanical properties of electron beam welded joints of tantalum and GH3128[J]. Materials Science and Engineering A, 2019, 768(4):138431. [百度学术]
赵宇星. 钽与因瓦合金电子束焊接接头组织及工艺研究[D]. 黑龙江: 哈尔滨工业大学, 2014. [百度学术]
ZHAO Y X. Research on EBW of Ta to Invar Alloy Technology and Microstructure of the Joint[D]. Heilongjiang: Harbin Institute of Technology, 2014. [百度学术]
周莎, 安耿, 席莎, 等. 钼及钼合金焊接技术的研究进展及应用前景[J]. 中国钼业, 2022, 46(01): 1-7. [百度学术]
ZHOU S,AN G,XI S,et al. Research Progress and Application Prospect of Welding Technologies for Molybdenum and Molybdenum Alloy[J]. China Molybdenum Industry, 2022, 46(01): 1-7. [百度学术]
李臻. 钽材氩弧焊接接头温度场数值模拟[J]. 稀有金属材料与工程, 2007(08): 1350-1353. [百度学术]
LI Z. Numerical Simulation on Temperature Field in Ta/Ta-16MnR Argon-arc Welder Joint[J]. Rare Metal Materials and Engineering, 2007(08): 1350-1353. [百度学术]
邢炜, 叶建林. 钽钢复合板钽覆层的焊接工艺研究 [J]. 钛工业进展, 2011, 28(03): 38-40. [百度学术]
XING W,YE J L. Welding Technology Research of Tantalum Cladding of Tantalum Steel Composite Plate[J]. Titanium Industry Progress,2011,28(03): 38-40. [百度学术]
薛勇. 浅谈氩弧焊焊接技术[J]. 黑龙江科技信息, 2014(09): 25. [百度学术]
XUE Y. Talking about argon arc welding technology[J]. Heilongjiang Science and Technology Information, 2014(09): 25. [百度学术]
姜超, 龙伟民, 冯健, 等. 铜/不锈钢爆炸焊界面组织及性能[J]. 焊接, 2021(09): 22-27,62. [百度学术]
JIANG C,LONG W M,FENG J,et al. Interfacial microstructure and mechanical properties of copper/stainless steel fabricated by explosive welding[J]. Welding & Joining, 2021(09): 22-27,62. [百度学术]
缪广红, 马秋月, 艾九英, 等. 钽箔/Q235钢爆炸焊接二维数值模拟[J]. 黄河科技学院学报, 2022, 24(05): 72-75. [百度学术]
MIAO G H,MA Q Y,AI J Y,et al.Two-Dimensional Numerical Simulation of Explosive Welding for Tantalum Foil/Q235 Steel[J]. Journal of Huanghe S&T University, 2022, 24(05): 72-75. [百度学术]
PAUL H, CHULIST R, MANIA I, et al. Interfacial Reactions in the Bonding Zones of Explosively Welded Tantalum to Stainless Steel Sheets[J]. Advanced Engineering Materials, 2021, 23(11):[页码不详]. [百度学术]
YANG M, MA H, SHEN Z, et al. Dissimilar material welding of tantalum foil and Q235 steel plate using improved explosive welding technique[J]. Materials & Design, 2020, 186: 108348. [百度学术]
张永赟, 王廷, 李宁, 等. PM-TZM钼合金电子束焊接特性[J]. 焊接学报, 2018, 39(03): 57-60,131. [百度学术]
ZHANG Y Y,WANG T,LI N,et al. Weldability of PM-TZM alloy using electron beam welding[J]. Transactions of the China Welding Institution, 2018, 39(03): 57-60,131. [百度学术]
MENG X, SONG F, LIN D, et al. Effect of the thickness of Cu interlayer on dissimilar laser welding of 304 stainless steel to tantalum [J]. Optics & Laser Technology, 2023, 157: 108727. [百度学术]
冯杉杉. Ta/304L激光焊接接头组织与力学性能研究 [D]. 江西: 南昌大学, 2022. [百度学术]
FENG S S. Study on Microstructure and Mechanical Properties of Ta/304L Laser Welded Joint[D]. Jiangxi: Nanchang University,2022. [百度学术]
MASUMOTO H, ASADA A, HASUYAMA H, et al. Diffusion bonding of tantalum and stainless steel [J]. Welding International, 1997, 11(2): 110-120. [百度学术]
翟秋亚, 刘帅宾, 杨全虎, 等. Ta1/Ta8Ni30Cr20Cu42/0Cr18Ni9储能焊接头组织与性能[J]. 焊接学报, 2020, 41(10): 60-64,86. [百度学术]
ZHAI Q Y,LIU S B,YANG Q H,et al. Microstructure and properties of Ta1/Ta8Ni30Cr20Cu42/0Cr18Ni9 energy storage welding joint[J]. Transactions of The China Welding Institution, 2020, 41(10): 60-64,86. [百度学术]
编辑部网址:http://www.71dhj.com [百度学术]
相关文章
相关作者
相关机构