铝合金筒体FSW和MIG焊接变形控制研究
Deformation Control of FSW and MIG Welding of Aluminum Alloy Shell
- 2022年52卷第7期 页码:100-104
DOI: 10.7512/j.issn.1001-2303.2022.07.14
扫 描 看 全 文
扫 描 看 全 文
田国平,张松,梁志方,等.铝合金筒体FSW和MIG焊接变形控制研究[J].电焊机,2022,52(7):100-104.
TIAN Guoping, ZHANG Song, LIANG Zhifang, et al.Deformation Control of FSW and MIG Welding of Aluminum Alloy Shell[J].Electric Welding Machine, 2022, 52(7): 100-104.
采用搅拌摩擦焊(FSW)和熔化极惰性气体保护焊(MIG)相结合的方法焊接制造的铝合金筒体(5A06 H112,内径,Φ,2 110,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=33182512&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=33182507&type=,3.38666677,2.45533323,×12,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=33182520&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=33182516&type=,2.03200006,2.53999996, mm),由20 mm厚壁板通过辊弯至内径,Φ,2 102 mm、筒体本体FSW拼焊、筒体大量附件MIG焊接后筒体内径变形大变形不规律,导致筒体焊后去除焊接余量内径精加工至内径,Φ,2 110 mm后筒体剩余壁厚不满足设计规定的12,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=33182531&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=33182526&type=,2.03200006,2.53999996, mm,而筒体精加工后壁厚过大将使其超重不满足系统对质量的要求,壁厚小于12 mm无法满足结构强度要求,壁厚的控制对整个系统的安全至关重要。对FSW焊后变形规律进行分析,通过调整单侧焊接厚度、改变焊接顺序、优化工装方案等措施可将焊后单侧内凹变形从最大10 mm降至2 mm以内;对附件MIG焊后变形规律进行分析,通过优化装焊顺序、优化工装方案及精加工工艺方案等措施,最终使筒体机加工后壁厚合格率由原来的23%提高至100%。
The aluminum alloy shell (5A06 H112, inner diameter ,Φ,2 110,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=33182540&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=33182534&type=,3.38666677,2.45533323,×12,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=33182547&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=33182543&type=,2.03200006,2.45533323, mm) is welded by the combination of friction stir welding (FSW) and consumable inert gas welding (MIG), which was rolled bending from 20 mm thick wall plate to inner diameter ,Φ,2 102 mm, FSW butt welding of barrel body and MIG welding of a large number of accessories of the shell. But the inner diameter is deformed greatly and the deformation is irregular. Which caused the residual wall thickness can't meeting the design requirements of 12 mm after finish machining to inner diameter of ,Φ,2 110 mm. It can’t meet the structural strength requirements if the thickness is too large or less than 12 mm. The control of wall thickness is very important to the safety of the whole system. Therefore, by analyzing the deformation law of FSW after welding, adjusting the welding thickness of one side, changing the welding sequence and optimizing the chemical assembly scheme can reduce the concave deformation of one side after welding from the maximum 10 mm to less than 2 mm; by analyzing the deformation law of accessories after MIG welding, optimizing the assembly and welding sequence, chemical assembly scheme and finishing process scheme, the qualified rate of wall thickness after barrel machining is increased from 23% to 100%.
5A06筒体装焊顺序FSWMIG焊接变形
5A06 shellwelding sequenceFSWMIGwelding deformation
路全彬,龙伟民,钟素娟,等. 铝合金焊接材料制备研究现状与发展[J].焊接,2016(2):6-9.
LU Quanbin,LONG Weimin,ZHONG Sujuan, et al. Status and development of preparation for aluminum alloy welding materials [J].Welding & Joining,2016(2):6-9.
徐默雷.铝合金材料的应用与开发潜力[J]. 当代化工研究,2018(10):132-133.
Xu Molei. Application and Development Potential of Aluminum Alloy Materials [J]. Modern Chemical Researc,2018(10):132-133.
He Zhubin, Fan Xiaobo, XuYongchao, et al. Inerstigation on the formability of 5A06 sheet for rapid gas forming [J]. Rare Metal Materials and Engineering, 2011,40(S3):144-145.
李小欣,郑延召. 焊接参数对5A06铝合金搅拌摩擦焊接头性能的影响[J]. 上海金属,2021,43(3):19-25.
LI Xiaoxin,ZHENG Yanzhao. Effect of Welding Parameters on Properties of Friction Stir Welded Joint of 5A06 Aluminum Alloy[J]. ShangHai Metals,2021,43(3):19-25.
王威,王旭友,秦国梁,等. 铝合金激光-小功率脉冲MIG电弧复合热源焊接特性分析[J]. 焊接学报,2007(8):37-40.
WANG Wei,WANG Xuyou,QIN Guoliang,LEI Zhen. Welding characteristics of laser-low power pulse MIG hybrid welding aluminium alloy [J]. Transactions of the China Welding Institution,2007(8):37-40.
HE Diqiu, LI Shengpeng, LI Jian, et al. Friction stir welding of 2024-T4 aluminum alloy [J]. Hot working process, 2011,40 (7): 112-117.
周金旭,徐玉君,齐芃芃,等。6005A铝合金MIG焊接接头组织及性能研究[J]. 热处理技术与装备,2021(4):38-42.
ZHOU Jinxu, XU Yujun, QI Pengpeng, et al. Study on Microstructure and Properties of MIG Welded Joint of 6005 A Aluminum Alloy [J]. Heat Treatment Technology and Equipment,2020,49(1):22-25.
丁洁琼,火巧英,金文涛,等。轨道车辆铝合金MIG焊搭接接头应力及变形研究[J]. 电焊机,2018,48(5):47-53.
DING Jieqiong,HUO Qiaoying,JIN Wentao, et al. Research on stress and deformation of aluminum alloy lap joint by MIG of railway vehicles [J]. Electric Welding Machine,2018,48(5):47-53.
万帅,韩晓辉,刘建,等。7B05-T5铝合金激光--MIG复合焊接头组织性能研究[J]. 机械,2019,46(3):30-37.
WAN Shuai,HAN Xiaohui,LIU Jian,SHEN Lin. Study on Microstructure and Properties of 7B05-T5 Aluminum Alloy Laser-MIG Hybrid Joint [J]. Machinery,2019,46(3):30-37.
吴影,陈辉,苟国庆,等。高速列车用6061和7N01铝合金焊接接头断裂韧性分析[J].焊接学报,2014,35(9):77-81.
WU Ying,CHEN Hui,GOU Guoqing, et al. Fracture toughness of 6061 and 7N01 aluminum alloy welded joints for high-speed train [J]. Transactions of the China Welding Institution,2014,35(9):77-81.
相关作者
相关机构