Study on the Microstructure and Mechanical Mroperties of Laser Spiral Spot Welding
- Vol. 54, Issue 10, Pages: 42-52(2024)
Published: 25 October 2024
DOI: 10.7512/j.issn.1001-2303.2024.10.05
移动端阅览
Published: 25 October 2024 ,
移动端阅览
高紫豪,杨尚磊,毕军航,等.激光螺旋点焊的断裂行为与断口研究[J].电焊机,2024,54(10):42-52.
GAO Zihao, YANG Shanglei, BI Junhang, et al.Study on the Microstructure and Mechanical Mroperties of Laser Spiral Spot Welding[J].Electric Welding Machine, 2024, 54(10): 42-52.
为研究激光螺旋点焊的断裂行为和断口特征,以期为高性能激光点焊的应用提供理论支持。采用振镜搭载机器人的激光螺旋焊接系统对1 mm厚汽车用高强钢进行焊接,设计了一种类阿基米德螺旋线扫描路径以使焊点热输入均匀分布,并对焊接接头的断裂行为进行分析。研究发现,在拉剪力的作用下,激光螺旋点焊主要发生的断裂失效形式为单面焊点撕出断裂和双面焊点撕出断裂,裂纹的萌生及扩展均是沿着熔合区和热影响区交界处。粗晶热影响的大角度晶界比例相对较少,为18.69%,KAM均值最大为0.65,存在的应力应变相对较大,使得裂纹更倾向于在粗晶热影响区萌生和扩展。
This article uses a laser spiral welding system equipped with a vibrating mirror and a robot to weld 1 mm high-strength steel for automobiles. In order to evenly distribute the heat input of the solder joint
a type of Archimedean spiral was designed
with an outer di
ameter of 5.0 mm for the scanning path. The spiral is composed of multiple semicircles and a 5 π mm circular path on the periphery
R
1
=0.5 mm,
R
2
=1.0 mm,
R
3
=1.5 mm,
R
4
=2.0 mm,
R
5
=2.5 mm. The fracture behavior of laser spiral spot welding was analyzed
and the stress process
crack propagation path
and fracture surface during the tensile shear process of laser spiral spot welding were studied. Under the action of tensile and shear forces
the main fracture failure modes of laser spiral spot welding are single-sided weld tearing fracture and double-sided weld tearing fracture. The initiation and propagation of cracks are both along the boundary between the fusion zone and the heat affected zone. The proportion of large angle grain boundaries affected by coarse grain heat is relatively small at 18.69%
with a maximum KAM mean of 0.65. The stress and strain present are relatively large
making cracks more likely to initiate and propagate in the coarse grain heat affected zone.
激光螺旋点焊汽车用高强钢疲劳断裂失效形式扫描路径
laser spiral spot weldinghigh-strength steel for automobilesfatigue fracturefailure modesscan path
吴青云,侯玲,王学敏. 汽车车身特种钢材点焊工艺研究[J]. 金属加工(热加工),2023(03):80-87.
LIU Q Y,HOU L,WANG X M. Research on the Spot Welding Process of Special Steel for Automotive Body [J].Metal Processing(Hot Working),2023(03):80-87.
王畅,于洋,王林,等. 冷轧双相钢镀锌条带状色差缺陷产生原因及机理研究[J]. 轧钢,2023,40(01):52-58.
WANG C,YU Y,WANG L,et al. Study on the Causes and Mechanism of Color Difference Defects in Cold-Rolled Dual-Phase Steel Galvanized Strip[J]. Steel Rolling,2023,40(01):52-58.
孙璐,李建英,武冠华,等. 超高强马氏体钢抗氢致延迟开裂性能的研究[J]. 上海金属,2023,45(01):33-41.
SUN L,LI J Y,WU G H,et al. Study on the Resistance to Hydrogen-Induced Delayed Fracture of Ultra-High Strength Martensitic Steel[J]. Shanghai Metal,2023,45(01):33-41.
常嘉玮. 浅谈汽车车身焊接的智能化及自动化[J]. 时代汽车,2021(08):137-138.
CHANG J W. Discussion on the Intelligence and Automation of Automotive Body Welding[J]. Time Auto,2021(08):137-138.
Lopez-Cortez V H,Reyes-Valdes F A. Understanding Resistance Spot Welding of Advanced High-Strength Steels[J]. Welding Journal,2008(12):87.
饶良才,蔡成伟,马海龙,等. 汽车车身焊接质量控制[J]. 中国高新区,2017(20):135.
RAO L C,CAI C W,MA H L,et al. Welding Quality Control of Automotive Body[J]. China High-Tech Zone,2017(20):135.
Pouranvari M,Marashi S P H. Critical review of automotive steels spot welding: process, structure and properties[J]. Science & Technology of Welding & Joining,2013,18(5):361-403.
吕安松,苏金花,杨则云,等. 不锈钢激光焊接工艺规范在轨道车辆中的应用[J]. 机车电传动,2020(05):36-40.
LV A S,SU J H,YANG Z Y,et al. Application of Stainless Steel Laser Welding Process Specification in Rail Vehicles[J].Electric Drive for Locomotives,2020(05):36-40.
Zaeh M F,Moesl J,Musiol J,et al. Material processing with remote technology revolution or evolution[J]. Physics Procedia,2010,5(part-PA):19-33.
Yang D,Tao W,Novelletto P A,et al. Remote laser welding of overlapping metal workpieces using helical path (s): U.S. Patent 10,675,713[P]. 2020-6-9.
Zhang W,Yang S,Lin Z,et al. Weld morphology and mechanical properties in laser spot welding of quenching and partitioning 980 steel[J]. Journal of Manufacturing Processes,2020,56:1136-1145.
J·L·所罗门,H-P·王,W·P·佩恩. 利用具有第一阶连续性的螺旋形焊接路径的激光束焊接:CN201610880942.2[P].2019-06-14.
Wang J B,Nakagawa T,Mukai Y,et al. Development of Laser Processing Robot Integrated System Solution (LAPRISS) for Remote Laser Welding[C]//Springer International Publishing,Springer International Publishing,2014
张博. 低碳钢激光点焊工艺特性与力学性能研究[D]. 黑龙江:哈尔滨工业大学,2007.
ZHANG B. Research on the Process Characteristics and Mechanical Properties of Low Carbon Steel Laser Spot Welding[D]. Heilongjiang:Harbin Institute of Technology,2007.
Kundu J,Ray T,Kundu A,et al. Effect of the Laser Power on the Mechanical Performance of the Laser Spot Welds in Dual Phase Steels[J]. Journal of Materials Processing Technology,2019,267:114-123.
Pouranvari M,Ranjbarnoodeh E. Resistance Spot Welding Characteristic of Ferrite-Martensite DP600 Dual Phase Advanced High Strength Steel-Part III:Mechanical Properties[J]. World Applied Sciences Journal,2013,15(11):1527-1531.
Masoumi M,Marashi S P H,Pouranvari M. Metallurgical and mechanical characterization of laser spot welded low carbon steel sheets[J]. Steel research international,2010,81(12):1144-1150.
Pouranvari,Marashi. Critical review of automotive steels spot welding:process,structure and properties[J]. Science and Technology of Welding and Joining,2013,18(5):361-403.
Iyer A,Stiller K,Leijon G,et al. Influence of dwell time on fatigue crack propagation in Alloy 718 laser welds[J]. Materials Science and Engineering A,2017,704:440-447.
Liu C,Reynier,Zhang D W,et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment[J]. Corrosion Science,2018,138:96-104.
相关作者
相关机构