Register Login
Welding Virtual Simulation | Views : 61 Downloads: 57 CSCD: 0
  • Export

  • Share

  • Collection

  • Album

    • Numerical Simulation of Stress of Pipeline in Mountain Areas with Large Slopes

    • LIU Congyue

      1 ,

      BU Mingzhe

      12 ,

      ZHANG Jie

      3 ,

      NIU Shengyuan

      1 ,

      LIU Yiming

      1 ,

      HAN Bin

      1
    • Vol. 54, Issue 8, Pages: 108-117(2024)   

      Published: 25 August 2024

    • DOI: 10.7512/j.issn.1001-2303.2024.08.15     

    Scan for full text

  • Quote

    PDF

  • LIU Congyue, BU Mingzhe, ZHANG Jie, et al.Numerical Simulation of Stress of Pipeline in Mountain Areas with Large Slopes[J].Electric Welding Machine, 2024, 54(8): 108-117. DOI: 10.7512/j.issn.1001-2303.2024.08.15.
  •  
  •  
    Sections

    Abstract

    The long-distance pipeline passes through mountains and hills, and the laying and welding process sometimes needs to be carried out at a 5°~45° slope. The pipeline in mountain areas with large slopes often fails due to excessive tensile stress, so its stress distribution becomes a necessary research topic. In this paper, the stress distribution of welded joints of X70 steel with a slope of 25° using automatic welding is studied. Based on the Thermal-Metallurgic-Mechanical theory, the finite element model of the welded joints of pipelines in mountainous areas with high slopes is established, and the actual heat source model and construction environment are taken as the boundary conditions. The welded joints are uniquely divided into higher and lower sides, and finally, the stress distribution is obtained, which fills the gap in the study of the stress distribution of welded joints in mountainous areas with large slopes. The hole-drilling method and the coercive method are used to measure the stress level of the inner and outer surfaces of the pipeline to verify the accuracy of the stress simulation. The welded joints are subjected to axial stress along the pipe due to gravity and supporting force. So the stress distribution of welded joints of pipelines in mountain areas with large slopes is different from that of pipelines without slope. The average width of the coarse-grained zone of the root welding layer of the higher side is 27 μm wider than that of the lower side. The average width of the coarse-grained zone of the hot welding layer of the higher side is 21 μm wider than that of the lower side. The tensile stress of the root welding layer of the higher side is 135 MPa higher than that of the lower side, and the high tensile stress zone of the root welding layer of the higher side is 1.6 mm wider than that of the lower side.

    transl

    Keywords

    large slopes; automatic welding; numerical simulation; higher and lower sides; stress distribution

    transl

    0 引言

    长输管道因其运量大、安全性高等独特优势获得了广泛的应用

    1。近年来,我国长输管道敷设长度共达50万公里2。由于长输管道敷设距离长且地势多山区丘陵,管道敷设及焊接过程需经过5°~45°的坡度地形3。其中,坡度小于25°的管道焊接工艺基于无坡度管道焊接工艺制定,而坡度25°及以上的管道焊接工艺基于坡度为25°的管道焊接工艺制定4-5。因此称坡度在25°及以上的山区管道为大坡度山区管道,且坡度为25°的管道焊接工艺为大坡度山区管道焊接工艺的基准6-7。由于坡度的影响,管道焊接过程中对焊机的爬坡能力、焊接效率等有着极高的要求8。全自动焊外根焊工艺因其焊机易于爬坡、焊接效率高等优点成为大坡度山区管道主流的焊接工艺9-10
    transl

    相较无坡度管道而言,大坡度山区管道常出现因冷裂纹导致的焊接接头断裂失效问题

    11。据国家管网西南管道局统计,大坡度山区管道全自动焊焊接接头出现冷裂纹的情况中有82%为拉应力水平过大导致12,因此掌握大坡度山区管道焊接接头应力分布成为控制冷裂纹的重要环节。目前,管道应力测量方法主要有盲孔法、中子衍射法、X射线法等13-16,但由于独特的施工环境、破坏性试验及大型精密仪器无法直接使用等问题导致应力测量困难。Ma17及Eva S V18等学者曾提出坡度将改变管道焊接接头应力状态的理论,随后Sisan A19等人预测了大坡度山区管道焊接接头应力分布结果,但其研究方法为在无坡度管道上添加坡度进行应力分析,导致计算精度较低。随着有限元技术的兴起,因其具有效率高、经济性好等优点,已成为研究管道焊接应力的主流方法。Sabra A20等人根据试验建立了TMM(Thermal-Metallurgic-Mechanical)理论并将其应用到应力的有限元模拟过程中。随后Sarvanis21等学者使用TMM理论模型对管道焊接应力进行模拟且结果准确,使得TMM理论模型成为管道焊接应力模拟的主流理论模型。Sharma22等人基于TMM理论使用有限元法对大坡度管道焊接接头进行应力分析,但其未充分考虑坡度因素。Martin23等人使用管道立焊热源模型代替大坡度管道焊接热源模型进行应力分析,但其精度较低。总体来说,针对大坡度管道焊接接头应力的研究方法不明确,至今并未有文献明确指出大坡度山区管道焊接接头应力的分布规律24-25
    transl

    目前有关大坡度山区管道焊接接头应力分布的研究非常少,为此本文针对X70钢坡度为25°全自动焊外根焊工艺下山区管道焊接接头应力分布规律进行了研究。基于TMM理论对其应力分布进行有限元模拟并进行试验验证,最终得出其应力分布规律。

    transl

    1 材料和试验步骤

    1.1 试验材料

    试验管道外径为813 mm,壁厚17.5 mm。母材及焊材化学成分如表1所示,力学性能如表2所示。全自动焊焊接参数如表3所示。

    transl

    表1  母材及焊材化学成分(质量分数,%
    Table 1  Chemical composition of base material and welding materials wt.%
    材料CMnPSSiCr
    X70 0.100 1.510 0.008 0.003 0.180 0.025
    ACL-X52M 0.069 1.070 0.006 0.003 0.190 0.020
    AFR-85K2 0.065 1.150 0.009 0.003 0.009 0.020
    icon Download:  CSV icon Download:  Table Images
    表2  母材及焊材机械性能
    Table 2  Mechanical properties of base metal and welding materials
    材料屈服强度/MPa拉伸强度/MPa延伸率/%
    X70 520 580 27
    ACL-X52M 453 528 30
    AFR-85K2 584 649 26
    icon Download:  CSV icon Download:  Table Images
    表3  焊接工艺参数
    Table 3  Welding parameters
    道次电流/A电压/V

    焊速

    /(mm·s-1

    热输入

    /(kJ·mm-1

    摆宽

    /mm

    根焊 120~200 16~22 5~8 0.40~5.05 1~2
    热焊 180~230 20~26 31~41 0.90~1.46 3~5
    填充焊 180~230 20~26 23~36 0.93~1.97 6~11
    盖面焊 180~230 20~26 23~33 0.55~1.45 12~15
    icon Download:  CSV icon Download:  Table Images

    1.2 试验步骤

    采用SYSWELD有限元软件(SYSWELD2008)进行温度场、微观组织和应力场分布模拟。温度场结果使用热电偶测温仪HPDJ8125进行测量验证。使用4%硝酸酒精腐蚀焊接接头后,使用光学显微镜Leica DM2500 M进行微观组织验证。采用盲孔应力测量仪HP-MK1以及矫顽力应力测量仪NOVOTEST KRC-M2验证应力结果。

    transl

    2 大坡度山区管道焊接接头有限元模型的建立

    基于TMM理论对大坡度山区管道焊接接头应力进行数值模拟。根据实际焊接接头建立有限元模型,加载热源并设置边界条件。

    transl

    2.1 有限元模型

    为兼顾计算效率及准确性,模拟过程使用二维旋转有限元模型计算,三维实体有限元模型验证的方法进行研究。大量研究表明,使用二维模型代替三维模型已经广泛应用于管道应力计算中

    26-29。为保证计算效率,二维有限元模型网格数自焊缝向其两侧逐渐减少。该模型单边长度为500 mm,最小网格为0.5 mm×0.3 mm。由于大坡度山区管道铺设、焊接及服役过程始终处于一定坡度上,为体现其独特性,本文将大坡度山区管道定义为上下坡口。如图1所示,同一管段较高位置为上坡口,较低位置为下坡口。与无坡度管道不同,大坡度山区管道研究均需区分上下坡口。
    transl

    fig

    图1  二维有限元模型与三维有限元模型上下坡口示意

    Fig.1  Schematic diagram of the higher and lower sides of 2D finite element model and 3D finite element model

    icon Download:  Full-size image | High-res image | Low-res image

    2.2 热源模型

    大量文献表明,双椭球热源模型可以用来很好地描述熔化极气体保护焊

    30-32。因此,本文使用如式(1)所示的双椭球热源模型,且管道内壁、外壁与空气之间均为对流换热33
    transl

    qf(x,y,z)=123ηUI(af+ar)bhchππexp(-3x2af-3y2bh2-3z2ch2),x0
    qr(x,y,z)=123ηUI(af+ar)bhchππexp(-3x2ar-3y2bh2-3z2ch2),x0

    式中 qfqr为热源能量;η为电弧效率;U为焊接电压(单位:V);I为焊接电流(单位:A);afarbhch为双椭球热源参数。

    transl

    2.3 冶金与力学模型

    本文主要使用扩散及切变模型来描述大坡度山区管道焊接接头固态相变。其扩散及切变模型为Leblond模型及Koistinen-Marburger模型

    34,如式(2)所示,Leblond模型主要控制奥氏体-珠光体、奥氏体-贝氏体及奥氏体-铁素体转变。如式(3)所示,切变Koistinen-Marburger模型主要控制奥氏体-马氏体转变。
    transl

    dP(T)dt=f(T.)×Peq(T)-P(T)τ(T) (2)

    式中 p为相比例;t为时间(单位:s);T.为加热或冷却速率;Peq为相平衡比例;τ为温度函数。

    transl

    P(T)=1-exp(-b(Ms-T)) (3)

    式中 p为马氏体相比例;T为温度(单位:K);Ms为马氏体开始转变温度;b为相变参数(管线钢一般为0.018)。

    transl

    Von Mises应力因三向应力考虑全面,常被用来评价应力水平。因此,本文使用Von Mises应力进行应力水平评价,其公式如下所示。

    transl

    aVon=((a1-a2)2+(a2-a3)2+(a3-a1)2)/3 (4)

    式中 a1a2a3为三向应力水平。此外,本研究中泊松比始终为0.33。

    transl

    2.4 边界条件建立

    图2所示,与无坡度管道焊接接头不同,大坡度山区管道在坡度地形上施工导致其受到重力的影响。由于同时受到地面的支持力,焊接接头受到重力的影响并非竖直向下而是延管道轴向。这个力成为了坡度对山区管道独特的影响因素,同时也成为了其应力模拟计中独特的边界条件。

    transl

    fig

    图2  大坡度山区管道受力方式

    Fig.2  Stress mode of pipelines in mountainous area with large slopes

    icon Download:  Full-size image | High-res image | Low-res image

    3 模拟结果分析

    在有限元模型、热源模型及边界条件建立后,通过有限元模拟计算得到温度场、组织分布及应力场。

    transl

    3.1 温度场分析

    图3所示,模拟所得整体焊缝形貌与实际基本相同,同时峰值温度及t8/5数值也基本相同,证明了模拟热源加载的准确性。

    transl

    fig
    icon Download:  | High-res image | Low-res image

    图3  温度场分布

    Fig.3  Temperature distribution

    3.2 组织分布分析

    温度场决定了焊接接头组织的分布情况,模拟所得焊接接头组织分布如图4所示,焊缝区以贝氏体组织为主。上下坡口热影响区组织均为贝氏体及铁素体组织。通过光镜对焊接接头组织的拍摄也验证了模拟所得的结论。但与无坡度管道焊接接头组织分布基本对称不同,根焊及热焊层粗晶区上下坡口不对称。根焊层上坡口粗晶区平均宽度较下坡口宽27 μm。热焊层上坡口粗晶区平均宽度较下坡口宽21 μm。

    transl

    fig

    图4  组织对比

    Fig.4  Microstructure comparison

    icon Download:  Full-size image | High-res image | Low-res image

    3.3 应力场分析

    基于温度场及组织场的分析最终得到大坡度山区管道焊接接头应力分布规律,应力分布云图如图5所示。与无坡度管道焊接接头轴向应力水平对称的现象不同,受到坡度的影响,大坡度山区管道焊接接头出现了上下坡口轴向应力水平不对称,上坡口拉应力水平较高,且高拉应力区较宽的现象。根焊层上坡口高应力区较下坡口宽2.2 mm。Von Mises应力水平也出现了同样的现象,根焊层上坡口Von Mises高拉应力区较下坡口高拉应力区宽1.6 mm。

    transl

    fig
    icon Download:  | High-res image | Low-res image

    图5  应力分布

    Fig.5  Stress distribution

    通过云图可以发现,受坡度影响,大坡度山区管道焊接接头根焊层及热焊层呈现上下坡口应力水平不对称,上坡口拉应力水平高且高拉应力区宽的现象。但云图只能定性表征应力分布情况。为准确表征大坡度山区管道焊接接头应力状态,根据图6对不同焊层进行应力分析。

    transl

    fig

    图6  应力分析路径

    Fig.6  Stress analysis path

    icon Download:  Full-size image | High-res image | Low-res image

    轴向应力分布如图7所示。与无坡度管道焊接接头应力分布对称的现象不同,受坡度影响,根焊层上下坡口应力水平不同,上坡口拉应力水平高,最高拉应力为628 MPa,位于上坡口热影响区,下坡口相同位置处应力为453 MPa。热焊层也出现了上下坡口应力不对称的现象。

    transl

    fig
    icon Download:  | High-res image | Low-res image

    图7  轴向应力分布

    Fig.7  Axial stress distribution

    环向应力分布如图8所示。环向应力分布与轴向应力分布不同。因大坡度山区管道主要受到重力及支持力导致的轴向应力的影响,因此环向应力仍保持焊缝两侧应力水平对称分布的情况。

    transl

    fig
    icon Download:  | High-res image | Low-res image

    图8  环向应力分布

    Fig.8  Hoop stress distribution

    焊接接头Von Mises应力分布如图9所示。受坡度影响,根焊层上下坡口应力水平不对称,上坡口拉应力水平较高,最高拉应力为639 MPa,出现在上坡口热影响区,下坡口相同位置应力为504 MPa。热焊层最大拉应力为625 MPa,出现在上坡口热影响区,下坡口相同位置处应力为507 MPa。

    transl

    fig
    icon Download:  | High-res image | Low-res image

    图9  Von Mises应力分布

    Fig.9  Von Mises stress distribution

    为验证应力模拟结果准确,通过盲孔法及矫顽力法对管道内表面及外表面应力水平进行测量。如图10所示,模拟值与测量值误差在10%以内。实际测量同样表明,根焊层轴向应力呈现上下坡口应力水平不对称,上坡口拉应力水平高且高应力区宽的现象。

    transl

    fig
    icon Download:  | High-res image | Low-res image

    图10  模拟与试验对比

    Fig.10  Comparison between simulation and experiment

    4 结论

    本文针对坡度为25°全自动焊外根焊工艺下的大坡度山区管道焊接接头(X70钢)应力分布规律进行了深入研究。基于TMM理论,通过有限元模拟和试验验证,得出以下结论:

    transl

    (1)与无坡度管道焊接接头不同,大坡度山区管道受到重力与地面支持力的共同作用,最终其焊接接头受到延管道轴向应力的影响。

    transl

    (2)与无坡度管道不同,受到坡度影响,大坡度山区管道根焊层上坡口粗晶区平均宽度较下坡口宽27 μm,热焊层上坡口粗晶区平均宽度较下坡口宽21 μm。

    transl

    (3)受到沿管道轴向应力的影响,与无坡度管道焊接接头应力分布状态不同,大坡度山区管道焊接接头根焊层及热焊层均出现上下坡口应力水平不对称,上坡口拉应力水平较高且高拉应力区较宽的现象。根焊层上坡口拉应力较下坡口高135 MPa;高拉应力区较下坡口宽2 mm。

    transl

    参考文献

    1

    AFAZOV S MBECKER A AHYDE T H. Mathematical Modeling and Implementation of Residual Stress Mapping From Microscale to Macroscale Finite Element Models[J]. Journal of Manufacturing Science and Engineering20121342):021001-11. [Baidu Scholar] 

    2

    ASLANI FUY BHUR Jet al. Behaviour and design of hollow and concrete-filled spiral welded steel tube columns subjected to axial compression[J]. Journal of Constructional Steel Research2017128261-288. [Baidu Scholar] 

    3

    BAO SLOU HZHAO Z. Evaluation of stress concentration degree of ferromagnetic steels based on residual magnetic field measurements[J]. Journal of Civil Structural Health Monitoring2020101):109-117. [Baidu Scholar] 

    4

    BHARDWAJ SRATNAYAKE R M CPOLATIDIS Eet al. Experimental investigation of residual stress distribution on girth welds fabricated at proximity using neutron diffraction technique [J]. The International Journal of Advanced Manufacturing Technology20221215-6):3703-3715. [Baidu Scholar] 

    5

    CAPEK JTROJAN KKEC Jet al. On the Weldability of Thick P355NL1 Pressure Vessel Steel Plates Using Laser Welding[J]. Materials (Basel)2020141): 131. [Baidu Scholar] 

    6

    CHEN Z HWANG PWANG H Het al. Thermo-mechanical analysis of the repair welding residual stress of AISI 316L pipeline for ECA[J]. International Journal of Pressure Vessels and Piping2021194104469. [Baidu Scholar] 

    7

    CHUN Y SPARK K-TLEE C S. Delayed static failure of twinning-induced plasticity steels[J]. Scripta Materialia20126612):960-965. [Baidu Scholar] 

    8

    DIEHL I LFONSECA G C DCLARKE T G R. Investigation of Residual Stresses within a Friction Welded Steel Pipeline by the Contour and X-ray Diffraction Methods[J]. Materials Researchhttps://doi.org/10.1590/1980-5373-MR-2021-0583. [Baidu Scholar] 

    9

    GAO XSHAO YXIE Let al. Prediction of Corrosive Fatigue Life of Submarine Pipelines of API 5L X56 Steel Materials[J].Materials(Basel)2019127):1031. [Baidu Scholar] 

    10

    GOU RZHANG YXU Xet al. Residual stress measurement of new and in-service X70 pipelines by X-ray diffraction method[J]. NDT & E International2011445):387-393. [Baidu Scholar] 

    11

    HU XJIANG H YLUO Yet al. A Study on Microstructure,Residual Stresses and Stress Corrosion Cracking of Repair Welding on 304 Stainless Steel: Part II-Effects of Reinforcement Height[J]. Materials (Basel)20201311):2434. [Baidu Scholar] 

    12

    JU J BLEE J SJANG J Iet al. Determination of welding residual stress distribution in API X65 pipeline using a modified magnetic Barkhausen noise method [J]. International Journal of Pressure Vessels and Piping2003809):641-646. [Baidu Scholar] 

    13

    KECHOUT KAMIRAT AZEGHIB N. Residual stress analyses in multilayer PP/GFP/PP composite tube[J]. The International Journal of Advanced Manufacturing Technology20191039-12):4221-4231. [Baidu Scholar] 

    14

    LE JTIAN YMENDES Jet al. Deep learning for radial SMS myocardial perfusion reconstruction using the 3D residual booster U-net[J]. Magnetic Resonance Imaging202183178-188. [Baidu Scholar] 

    15

    LIU Z YLI X GDU C Wet al. Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment[J]. Corrosion Science2009514):895-900. [Baidu Scholar] 

    16

    LOTHHAMMER L RVIOTTI M RALBERTAZZI Aet al. Residual stress measurements in steel pipes using DSPI and the hole-drilling technique[J]. International Journal of Pressure Vessels and Piping201715246-55. [Baidu Scholar] 

    17

    MA W BBAI T WLI Y Yet al. Research on Improving the Accuracy of Welding Residual Stress of Deep-Sea Pipeline Steel by Blind Hole Method[J]. Journal of Marine Science and Engineering2022106):791. [Baidu Scholar] 

    18

    MARQUES E S VSILVA F J GPEREIRA A B. Comparison of Finite Element Methods in Fusion Welding Processes—A Review[J]. Metals2020101):75. [Baidu Scholar] 

    19

    MIRZAEE-SISAN AWU G. Residual stress in pipeline girth welds- A review of recent data and modelling [J]. International Journal of Pressure Vessels and Piping2019169142-152. [Baidu Scholar] 

    20

    SABRA ATIA M KJAIN M K. A parametric study of FE modeling of die-less clinching of AA7075 aluminum sheets[J]. Thin-Walled Structures2018132717-728. [Baidu Scholar] 

    21

    SARVANIS G CCHATZOPOULOU GFAPPAS Det al. Bending response of lap welded steel pipeline joints [J]. Thin-Walled Structures2020157107065. [Baidu Scholar] 

    22

    SHARMA S KMAHESHWARI S. A review on welding of high strength oil and gas pipeline steels[J]. Journal of Natural Gas Science and Engineering201738203-217. [Baidu Scholar] 

    23

    WALD FVILD MKUŘíKOVá Met al. Finite‐Element‐Bemessung von Stahlverbindungen basierend auf der Komponentenmethode[J]. Stahlbau2020895):482-495. [Baidu Scholar] 

    24

    WANG GWANG JYIN Let al. Quantitative Correlation between Thermal Cycling and the Microstructures of X100 Pipeline Steel Laser-Welded Joints[J]. Materials (Basel)2019131):121. [Baidu Scholar] 

    25

    WANG WHUANG SZHANG Jet al. Characterization of Clustered Cracks at Weld Root Based on Uniform-Magnetic-Field Distortion Measurement[J]. IEEE Transactions on Instrumentation and Measurement2022711-10. [Baidu Scholar] 

    26

    WU YZOU RWANG Yet al. Residual Stress in Oil and Gas Pipelines with Two Types of Dents during Different Lifecycle Stages[J]. KSCE Journal of Civil Engineering2020246):1832-1844. [Baidu Scholar] 

    27

    XIONG ZZHENG WTANG Let al. Self-Gathering Effect of the Hydrogen Diffusion in Welding Induced by the Solid-State Phase Transformation[J]. Materials (Basel)20191218):2897. [Baidu Scholar] 

    28

    XU KQIAO G YSHI X Bet al. Effect of stress-relief annealing on the fatigue properties of X80 welded pipes[J]. Materials Science and Engineering: A2021807140854. [Baidu Scholar] 

    29

    YAGHI A HHYDE T HBECKER A Aet al. Finite element simulation of residual stresses induced by the dissimilar welding of a P92 steel pipe with weld metal IN625[J]. International Journal of Pressure Vessels and Piping2013111-112173-86. [Baidu Scholar] 

    30

    ZEINODDINI MARNAVAZ SZANDI A Pet al. Repair welding influence on offshore pipelines residual stress fields:An experimental study[J]. Journal of Constructional Steel Research20138631-41. [Baidu Scholar] 

    31

    ZHANG HHAN TWANG Yet al. Effects of Fillet Weld Size and Sleeve Material Strength on the Residual Stress Distribution and Structural Safety While Implementing the New Sleeve Repair Process[J]. Materials20211423):7463. [Baidu Scholar] 

    32

    ZHAO WJIANG WZHANG Het al. 3D finite element analysis and optimization of welding residual stress in the girth joints of X80 steel pipeline[J]. Journal of Manufacturing Processes202166166-178. [Baidu Scholar] 

    33

    REN X BZHANG Z LNYHUS B. Effect of residual stresses on ductile crack growth resistance[J]. Engineering Fracture Mechanics2010778):1325-1337. [Baidu Scholar] 

    34

    RONG YXU JHUANG Yet al. Review on finite element analysis of welding deformation and residual stress[J]. Science and Technology of Welding and Joining2017233):198-208. [Baidu Scholar] 

    Alert me when the article has been cited
    Submit

    Related Articles

    No data

    Related Author

    No data

    Related Institution

    No data
    0