Current Status and Prospect of Multi-Scale Numerical Simulation of Laser Welding Process
- Vol. 54, Issue 8, Pages: 8-19(2024)
Published: 25 August 2024
DOI: 10.7512/j.issn.1001-2303.2024.08.02
Quote
PDF
Scan for full text
Published: 25 August 2024
Scan for full text
Quote
As an advanced welding technology, laser welding technology has been widely used in high-end manufacturing industries, while the complex thermodynamic behaviors of the keyhole and the molten pool determines the quality of the joint, which has influences on the further development and the applications of laser welding technology. Numerical simulation methods have been widely used in basic theoretical research of welding such as multi-physical filed behaviors of welding process because of its their low cost and high efficiency. At present, numerical simulation methods with different scales had been developed in the multi-physics field research of laser welding. Based on the research achievements at home and abroad, the main methods and research contents used in the numerical simulation of laser welding at the atomic scale, micro-scale, macro-scale, and multi-scale coupling were summarized in this paper, and their characteristics were analyzed. Finally, the prospect of the development of multi-scale numerical simulation of laser welding was discussed.
laser welding;
multi-scale;
keyhole;
molten pool;
numerical simulation
激光焊接以其能量密度高、焊接过程稳定、生产效率高及热影响区小等诸多优势,已广泛应用于高端制造业。当高能量密度激光束作用于材料时,熔融金属会发生气化并在金属气化反冲作用力作用下产生匙孔(Keyhole),这使得熔池具有复杂的动力学行为。在激光焊接过程中,匙孔的稳定性对熔池的动态行为具有决定性作用,并最终影响到接头质量。此外,从微观角度考虑,匙孔和熔池复杂的热力行为也对熔池凝固过程中组织演变具有决定性作用。因此,深入了解激光焊接熔池中传质传热行为和动态凝固过程对改善焊缝组织结构和优化接头性能至关重要。
一些研究者利用高速摄像和X射线成像技术等试验方法来分析匙孔和熔池的动力学行为,如利用高速成像技术分析激光焊接过程中匙孔喷射出的激光致等离子体流的形态、大小和行为以及匙孔形貌[
随着计算技术的发展,数值模拟作为一种高效、低成本的方法,能够较为准确地模拟焊接过程多物理场行为及熔池凝固过程,已被广泛应用于焊接基础理论的研究。鉴于激光焊接熔池和匙孔的复杂性,数值模拟手段相较于实验手段表现出更大的优势。本文基于国内外学者的研究成果,将对激光焊接在原子尺度、微观尺度、宏观尺度和多尺度耦合方面的数值模拟方法和研究进展进行综合分析,旨在更好地理解激光焊接不同尺度数值模拟方法的适用性及各尺度之间的耦合程度,促进激光焊接多物理场多尺度数值模拟的发展,并为激光焊接工艺开发与工程应用推广提供理论指导。
第一性原理计算是以量子力学理论为基础,根据原子核和电子的相互作用和运动规律,最大限度地对问题进行“非经验”处理,进一步求解薛定谔方程的过程,从而计算出体系的物理性能[
由于铝/钢异种金属激光焊接过程中Fe-Al金属间化合物(Intermetallic Compounds, IMCs)的生成恶化了接头性能,国内外研究人员通过添加Cu、V、Ni、Mn、合金元素来调控IMCs的生成,并采用第一性原理计算方法研究了金属间化合物的弹性和电子性能[
图1 单元胞模型
Fig.1 Unit cell models
此外,在其他异种材料的激光焊接领域中也采用第一性原理进行了大量金属间化合物的研究[
分子动力学模拟是一种用于研究原子和分子尺度的物理过程计算方法。分子动力学模拟的基本原理是:先给定原子的初始位置,由体系中各粒子的位置拟合出经验势函数,采用牛顿运动定律来标记每个粒子的运动轨迹,然后运用统计物理规律根据每个粒子的空间位置及速度计算出整个体系的宏观物理量[
朱忠尹、Yan等人[
此外,分子动力学模拟在超快激光焊接领域较传统有限元模拟表现出显著优势。闻锦程等人[
激光焊接过程中,材料、工艺参数、热源作用等众多因素都对焊缝组织演变及接头性能产生重要影响。为更好地理解熔合区微观组织的形成机制,研究激光焊接熔池的凝固过程显得尤为重要,然而通过实验手段难以对焊接接头组织演变进行动态观察。随着数值模拟技术的日益成熟,为探究焊接熔池凝固行为提供了新途径。此外,焊接工艺本身具有凝固速率大、温度分布不均匀、动态结晶与偏析严重等特点,都增加了接头组织模拟的难度[
蒙特卡洛(MC)法是基于最小界面能原理,采用概率模型来模拟微观组织演变的一种随机性方法[
元胞自动机(CA)法的原理是将计算区域离散成若干个元胞,并为每个元胞都定义初始状态,这些元胞按照一定规则发生改变[
Gu等人[
图2 熔池中枝晶生长和孔隙率在氢浓度场下的演变结果[
Fig.2 Evolution of dendrite growth and porosity under hydrogen concentration in molten pool[
这些研究展示了CA法在模拟激光焊接过程中微观组织演变方面的适用性和灵活性。
相场(PF)法以Ginzburg-Landau理论为基础,通过构建微分方程来表达扩散、有序化势和热力学驱动的耦合作用,通过引入相场变量来表征固液相及固液界面[
柱状晶向等轴晶转变(Columnar-to-Equiaxed Transition,CET)是激光焊接过程中焊缝组织演变常见的现象,这种转变有助于防止大柱状晶粒的生长,从而改善焊接接头的力学性能。Guo等人[
图3 激光焊缝熔合区不同位置瞬态热条件下的显微组织预测[
Fig.3 Predicted microstructure under transient thermal conditions at different locations in fusion zone of laser weld[
此外,众多学者对激光焊缝晶粒生长的影响因素进行了相关探究。Sheikhi等人[
需要强调的是,在实际焊接过程中枝晶的生长是三维的,这比二维数值模拟要复杂得多。因此将三维和二维模型进行对比也是一个值得深入探讨的主题。Bailey等人[
图4 (a)2D多晶粒和(b)3D横截面多晶粒模拟对比[
Fig.4 Comparison of (a) 2D multi-dendrite and (b) 3D cross-section multi-dendrite simulations[
MC法能够在较大尺度内对激光焊熔池凝固过程的微观组织演变进行模拟,同时考虑了组织演变过程中的随机性,无需对晶粒的具体情况进行假设,计算数值较为稳定,收敛性可以得到保证[
综上所述,目前MC、CA和PF法各具优势,已被广泛应用于激光焊接熔池凝固的微观组织模拟中。然而,采用单一的模拟方法仅在微观尺度对组织演变进行分析,难以真实反映实际的组织演变过程。因此基于这三种微观组织模拟方法与其他物理场进行耦合,才能在多尺度水平下真实地动态模拟激光焊接微观组织演变过程。
3.1.1 匙孔和熔池的动态行为及稳定性研究
当高能量密度的激光束持续作用在母材表面时,材料会发生气化,在材料气化反冲作用力下匙孔快速形成和演化[
Ai等人[
3.1.2 匙孔致气孔形成机理研究
在激光深熔焊过程中,匙孔的不稳定,易诱发气泡的形成,这些气泡在熔池凝固后被困在熔池后部,形成匙孔诱导气孔[
Wu等人[
图5 气孔形成机制[
Fig.5 Porosity formation mechanism[
综上所述,匙孔致气孔的形成原因主要与熔池的传质传热行为、反冲压力和表面张力引起的匙孔坍塌频率、熔池凝固速率密切相关。通过数值模拟手段阐明熔池和匙孔的动力学行为,可以为抑制气孔缺陷的产生提供理论支撑。
在激光焊接过程中,激光作用区域快速加热和冷却,导致材料的显微组织和应力状态发生了强烈的变化,这些特性决定了焊接接头的力学性能[
异种材料激光焊接过程中由于异种材料之间的物性差异,加剧了温度分布的不均匀性并最终影响着残余应力的分布。Bu等人[
厚板激光焊接技术在许多关键的工程结构中得到了广泛应用,但其安全性和稳定性仍然受到焊接热循环带来的残余应力的影响。Yan等人[
基于前文所述,仅在单尺度层面难以准确分析激光焊接过程的多物理场演变。尤其在微观组织演变分析中,激光熔池宏观尺度的传质传热和微观尺度的固液界面动力学之间复杂的相互作用协同影响着凝固过程。因此,多尺度耦合的数值模拟是揭示激光焊接多物理场,尤其是微观组织演变机制的有力手段。
Badawy等人[
Wei等人[
图6 不同焊接速度下模拟的三维晶粒结构对比[
Fig.6 Comparison of simulated 3D grain structure at different welding speed[
(a)1 m/min;(b)8 m/min
Gu等人[
图7 四个焊道的晶粒组织演变[
Fig.7 Grain structure evolution of four welding passes[
Han等人[
图8 多尺度模型示意[
Fig.8 Schematic diagram of multi-scale model[
数值模拟计算是激光焊接基础理论研究的重要方法。原子尺度的第一性原理计算为异种材料激光焊接过程中的金属间化合物形成和控制提供指导;分子动力学模拟可在纳米级别对激光焊接接头的变形机制、扩散行为进行研究。微观尺度的蒙特卡洛法、元胞自动机法和相场法可对激光焊接熔池凝固组织演变和焊缝晶粒生长进行模拟研究。然而,不同尺度的模拟方法有待进一步发展。例如,微观尺度的MC法缺乏明确的理论基础,难以定量分析凝固过程中的微观组织演变;CA法如何跟踪和演化尖锐的固/液界面以及如何消除网格诱导影响;PF法如何提高计算效率并适用于更大尺度的组织模拟,都需要进一步改进。
国内外的研究结果也表明,仅采用单尺度下的模拟方法难以建立全面的激光焊接数值模拟系统。针对单尺度模拟的局限性,目前国内外学者也已开发出激光焊接过程多尺度、多场耦合的数值模拟。因此,多尺度、多场耦合的数值模拟将是未来数值模拟发展的方向,有望建立激光焊接“成分-工艺-组织-性能”的数值分析集成框架,进而实现激光焊接工艺优化和应用创新。
Raja Kumar M, Tomashchuk I, Jouvard J, et al. High-speed imaging of vapor plume in the treatment of dissimilar Aluminum/Titanium interface with Yb:YAG laser pulse[J]. Journal of Advanced Joining Processes, 2022, 5: 100097. [Baidu Scholar]
Üstündağ Ö, Bakir N, Gumenyuk A, et al. Influence of oscillating magnetic field on the keyhole stability in deep penetration laser beam welding[J]. Optics & Laser Technology,2021,135:106715. [Baidu Scholar]
Seto N,Katayama S,Matsunawa A. High-speed simultaneous observation of plasma and keyhole behavior during high power CO2 laser welding: Effect of shielding gas on porosity formation[J]. Journal of Laser Applications,2000,12(6):245-250. [Baidu Scholar]
Wolff S J,Gould B,Parab N,et al. Preliminary Study on the Influence of an External Magnetic Field on Melt Pool Behavior in Laser Melting of 4140 Steel Using In-Situ X-Ray Imaging[J]. Journal of Micro and Nano - Manufacturing,2020,8(4):041016. [Baidu Scholar]
张冬妮. NiTi SMA/304 SS激光焊HEA填充粉末设计及接头组织性能研究[D]. 北京:北京工业大学,2022. [Baidu Scholar]
ZHANG D N. Study on Hea Powder Design and Microstructure and Properties of NiTi SMA/304 SS Laser Welding[D]. Beijing: Beijing University of Technology,2022. [Baidu Scholar]
田伟. Mg/Al异种金属激光焊接试验研究[D]. 湖南:湖南大学,2013. [Baidu Scholar]
TIAN W. Experimental Study on the Laser Welding of Magnesium and Aluminum Dissimilar Metal[D]. Hunan: Hunan University,2013. [Baidu Scholar]
Zhang Y T,Wang W X,Li Z Y,et al. Study of the brittleness mechanism of aluminum/steel laser welded joints with copper and vanadium interlayers[J]. Optics & Laser Technology,2023,163:109319. [Baidu Scholar]
Li Y L,Liu Y R,Yang J. First principle calculations and mechanical properties of the intermetallic compounds in a laser welded steel/aluminum joint[J]. Optics & Laser Technology,2020,122:105875. [Baidu Scholar]
Shi Y C,Li Z Q,Yin C M,et al. Effect of alloying elements Cu and Ni on mechanical properties of steel/aluminum laser welded joints[J].Optik,2022,255:168707. [Baidu Scholar]
Zhou D W,Xu S H,Zhang L J,et al. Microstructure, mechanical properties,and electronic simulations of steel/aluminum alloy joint during deep penetration laser welding[J]. The International Journal of Advanced Manufacturing Technology,2017,89(1-4):377-387. [Baidu Scholar]
Dai J,Yu B L,Ruan Q D,et al. Improvement of the Laser-Welded Lap Joint of Dissimilar Mg Alloy and Cu by Incorporation of a Zn Interlayer[J]. Materials, 2020,13(9):2053. [Baidu Scholar]
Feng S S,Zhou Y Q,Zhu Z Q,et al. Microstructure and Mechanical Properties of Laser-Welded Joint of Tantalum and Stainless Steel[J].Metals,2022,12(10):1638. [Baidu Scholar]
朱忠尹. CrCoNi中熵合金超声辅助激光焊工艺及接头服役性能研究[D]. 四川: 西南交通大学,2021. [Baidu Scholar]
ZHU Z Y. Research on Ultrasonic Assisted Laser Welding Technology and Service Performance of Welded Joints of CrCoNi Medium Entropy Alloy[D]. Sichuan: Southwest Jiaotong University,2021. [Baidu Scholar]
刘世恩. 基于分子动力学锆基非晶结晶及连接界面机制研究[D]. 甘肃:兰州理工大学,2021. [Baidu Scholar]
LIU S. Investigation on Crystallization and Bonding Zr-base Metallic Glasses via Molecular Dynamic Simulation[D]. Gansu: Lanzhou University of Technology,2021. [Baidu Scholar]
Yan S H,Zhou H Y,Zhu Z Y,et al. High strength-ductility synergy in a laser welded dissimilar joint of CrCoNi medium-entropy alloy and stainless steel[J]. Materials Science and Engineering:A,2022,840:142854. [Baidu Scholar]
Zhu Z Y,Yan S H,Chen H,et al. Unprecedented combination of strength and ductility in laser welded NiCoCr medium entropy alloy joints[J]. Materials Science and Engineering:A,2021,803:140501. [Baidu Scholar]
Luan S Y,Yu S T,Gui C Q,et al. Atomic-scale structural evolution and welding deformations of laser welded joints in Ag nanowire connectors on homogeneous substrates[J]. Japanese Journal of Applied Physics,2020,59(11):115002. [Baidu Scholar]
黄彦琴. Vit1非晶合金的激光焊接特性与工艺研究[D]. 甘肃:兰州理工大学,2022. [Baidu Scholar]
HUANG Y Q. Study on Laser Welding Characteristics and Process of Vit1 Amorphous Alloy[D]. Gansu: Lanzhou University of Technology,2022. [Baidu Scholar]
闻锦程,张琳,吴寒,等. 飞秒激光作用铝-玻璃界面的分子动力学模拟研究[J]. 激光与光电子学进展, 2023,60(1):259-267. [Baidu Scholar]
WEN J C,ZHANG L,WU H,et al. Molecular Dynamics Simulation of Aluminum-Fused Silica Interface Shot by Femtosecond Laser[J]. Laser & Optoelectronics Progress,2023,60(1):259-267. [Baidu Scholar]
辜诚. 铝合金激光焊接三维微观组织及冶金气孔形成与演变模拟[D]. 江苏:南京航空航天大学,2017. [Baidu Scholar]
GU C.Simulation of Formation and Evolution of Three-Dimensional Microstructure and Metallurgy Porosity in the Laser Beam Welding of Aluminum Alloy[D]. Jiangsu: Nanjing University of Aeronautics and Astronautics,2017. [Baidu Scholar]
黄义. 高速列车钛合金激光焊接接头微观组织结构分析[D]. 湖南:中南大学,2022. [Baidu Scholar]
HUANG Y. The Microstructure Analysis of Welded Joints of Titanium Alloy Used for High-Speed Train in Laser Welding[D]. Hunan: Central South University,2022. [Baidu Scholar]
王磊. 2A14铝合金激光焊接熔池微观组织演变相场法研究[D]. 江苏:南京航空航天大学,2018. [Baidu Scholar]
WANG L. Phase Field Investigation on Microstructure Evolution in the Laser Welding Pool of 2A14 Aluminum Alloy[D]. Jiangsu: Nanjing University of Aeronautics and Astronautics,2018. [Baidu Scholar]
Wei H L,Elmer J W,Debroy T. Crystal growth during keyhole mode laser welding[J]. Acta Materialia,2017,133:10-20. [Baidu Scholar]
高启涵. 1060铝合金激光焊焊缝晶粒生长及对接头力学性能的影响[D]. 辽宁:大连交通大学,2020. [Baidu Scholar]
GAO Q H. Grain Growth and its Influence on the Mechanical Properties of Laser-Welded 1060 Aluminumalloy[D]. Liaoning:Dalian Jiaotong University,2020. [Baidu Scholar]
王力群. 激光焊接热影响区晶粒长大Monte Carlo模拟[D]. 湖北:华中科技大学,2004. [Baidu Scholar]
WANG L Q. Monte Carlo Simulation of Grain Growth in the Heat-Affected-Zone of Laser Welding[D]. Hubei: Huazhong University of Science and Technology,2004. [Baidu Scholar]
Li M Y,Kannatey E. Monte Carlo Simulation of Heat-Affected Zone Microstructure in Laser-Beam-Welded Nickel Sheet[J]. Welding Journal,2002,3:37-44. [Baidu Scholar]
Gu C,Wei Y,Yu F, et al. Cellular Automaton Study of Hydrogen Porosity Evolution Coupled with Dendrite Growth During Solidification in the Molten Pool of Al-Cu Alloys[J]. Metallurgical and materials transactions. A,Physical metallurgy and materials science,2017,48(9):4314-4323. [Baidu Scholar]
刘芸. 铝锂合金激光焊接熔池凝固过程微观组织建模与仿真研究[D]. 江苏:南京航空航天大学,2018. [Baidu Scholar]
LIU Y. Numerical Study on Microstructural Evolution in the Molten Pool of Laser Beam Welding for Al-Li alloy[D].Jiangsu: Nanjing University of Aeronautics and Astronautics, 2018. [Baidu Scholar]
李玉斌. 铍激光焊接性研究及焊接过程微观组织模拟[D]. 四川:中国工程物理研究院,2009. [Baidu Scholar]
LI Y B. Study of Beryllium Laser Weldability and Microstructure Simulation of the Welding Process[D]. Sichuan: China Academy of Engineering Physics,2009. [Baidu Scholar]
Dey I,Schätti N,Gerstgrasser M,et al. CA single track simulation of laser conduction welding with stainless steel 316L (1.4404)[J]. Procedia CIRP,2022,113:301-306. [Baidu Scholar]
Guo L Y,Han C,Ren L Y,et al. Effect of Transient Thermal Conditions on Columnar-to-Equiaxed Transition during Laser Welding: A Phase-Field Study[J]. Metals,2022,12(4):571. [Baidu Scholar]
Xiong L D,Zhu G L,Mi G Y,et al. A phase-field simulation of columnar-to-equiaxed transition in the entire laser welding molten pool[J]. Journal of Alloys and Compounds, 2021,858:157669. [Baidu Scholar]
Sheikhi M,Farhangian M,Jabbareh M A,et al. Heat affected zone evolution in fine grained aluminum alloys during laser welding: Phase-field simulation and analytical investigation[J]. Optics & Laser Technology, 2024,174:110559. [Baidu Scholar]
Yang C L,Yang F,Meng X M,et al. Phase-field simulation of the dendrite growth in aluminum alloy AA5754 during alternating current electromagnetic stirring laser beam welding[J]. International Journal of Heat and Mass Transfer,2024,218:124754. [Baidu Scholar]
Mi G Y,Xiong L D,Wang C M,et al.Two-dimensional phase-field simulations of competitive dendritic growth during laser welding[J]. Materials & Design,2019,181:107980. [Baidu Scholar]
Bailey N S,Hong K,Shin Y C. Comparative assessment of dendrite growth and microstructure predictions during laser welding of Al 6061 via 2D and 3D phase field models[J]. Computational Materials Science, 2020,172:109291. [Baidu Scholar]
Jiang M,Li B C,Chen X,et al. Numerical study of thermal fluid dynamics and solidification characteristics during continuous wave and pulsed wave laser welding[J]. International Journal of Thermal Sciences, 2022,181:107778. [Baidu Scholar]
Li L Q,Peng G C,Wang J M,et al. Numerical and experimental study on keyhole and melt flow dynamics during laser welding of aluminium alloys under subatmospheric pressures[J]. International Journal of Heat and Mass Transfer,2019,133:812-826. [Baidu Scholar]
Ai Y W,Liu X Y,Huang Y,et al. Numerical analysis of the influence of molten pool instability on the weld formation during the high speed fiber laser welding[J]. International Journal of Heat and Mass Transfer,2020,160:120103. [Baidu Scholar]
Chen J C,Chen X M,Liu X J,et al. Numerical investigation on keyhole stability and weld pool dynamics during quasi-continuous laser beam welding of Ti6Al4V plate using constant and modulated high-frequency pulsed heat input[J]. International journal of advanced manufacturing technology,2022,121(1-2):229-247. [Baidu Scholar]
Ai Y W,Dong G Y,Yuan P C,et al. The influence of keyhole dynamic behaviors on the asymmetry characteristics of weld during dissimilar materials laser keyhole welding by experimental and numerical simulation methods[J]. International Journal of Thermal Sciences,2023,190:108289. [Baidu Scholar]
Chen S,Zhao Y Q,Tian S H,et al. Study on keyhole coupling and melt flow dynamic behaviors simulation of 2219 aluminum alloy T-joint during the dual laser beam bilateral synchronous welding[J]. Journal of Manufacturing Processes,2020,60:200-212. [Baidu Scholar]
Tang F Y,Wei Y H,Qian L G,et al. Asymmetry of keyhole and weld pool geometry in PLBW of tailor-welded steel sheets with edge misalignment: Numerical modeling and experimental validation[J]. Optics & Laser Technology,2023,161:109205. [Baidu Scholar]
Chen J C,Chen X M,Liu X J,et al. Numerical investigation on keyhole collapsing and rebuilding behavior during pulsed laser beam welding of Ti6Al4V titanium alloy under various pulse frequencies[J]. Applied physics. A, Materials Science & Processing,2022,128(2): 140. [Baidu Scholar]
Wu D S,Hua X M,Huang L J,et al. Elucidation of keyhole induced bubble formation mechanism in fiber laser welding of low carbon steel[J]. International Journal of Heat and Mass Transfer,2018,127:1077-1086. [Baidu Scholar]
Huang L J,Hua X M,Wu D S,et al. Effect of magnesium content on keyhole-induced porosity formation and distribution in aluminum alloys laser welding[J]. Journal of Manufacturing Processes,2018,33:43-53. [Baidu Scholar]
Sun Y,Li L Q,Hao Y,et al. Numerical modeling on formation of periodic chain-like pores in high power laser welding of thick steel plate[J]. Journal of Materials Processing Technology,2022,306:117638. [Baidu Scholar]
Lin R Q,Wang H P,Lu F G,et al. Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys[J]. International Journal of Heat and Mass Transfer,2017,108:244-256. [Baidu Scholar]
Lu F G,Li X B,Li Z G,et al. Formation and influence mechanism of keyhole-induced porosity in deep-penetration laser welding based on 3D transient modeling[J]. International Journal of Heat and Mass Transfer,2015,90:1143-1152. [Baidu Scholar]
He Y J,Zeng Y D,Li Z Y,et al. The effect of laser segmented skip welding on welding distortion and residual stress in butt weld of 6061 aluminum alloy thin plate[J]. International Journal of Advanced Manufacturing Technology,2023,124(10):3293-3309. [Baidu Scholar]
Zhang G Y,Li W H,Xu G J,et al. Simulation of temperature field and residual stress in high-power laser self-melting welding process of CLF-1 steel medium-thick plate[J]. Fusion Engineering and Design,2023,195:113936. [Baidu Scholar]
Gao S,Geng S N,Jiang P,et al. Numerical study on the effect of residual stress on mechanical properties of laser welds of aluminum alloy 2024[J]. Optics & Laser Technology,2022,146:107580. [Baidu Scholar]
Yan S H,Meng Z,Chen B,et al. Prediction of temperature field and residual stress of oscillation laser welding of 316LN stainless steel[J]. Optics & Laser Technology,2022,145:107493. [Baidu Scholar]
Xiong L D,Mi G Y,Wang C M,et al. Numerical Simulation of Residual Stress for Laser Welding of Ti-6Al-4V Alloy Considering Solid-State Phase Transformation[J]. Journal of Materials Engineering and Performance,2019,28(6):3349-3360. [Baidu Scholar]
Bu H C,Zhan X H,Yang H Y,et al. Numerical simulation of thermal distribution and residual stress characteristic for laser wobble joining of CFRTP and Ti-6Al-4V alloy[J].Journal of Manufacturing Processes,2022,79:562-575. [Baidu Scholar]
Zhou X F,Cao X B,Zhang F,et al. Numerical and experimental investigation of thermal stress distribution in laser lap welding of Ti6Al4V and 2024 alloy plates[J]. the International Journal of Advanced Manufacturing Technology,2022,118(5-6):1427-1440. [Baidu Scholar]
Yan H Z,Zeng X G,Cui Y H,et al. Numerical and experimental study of residual stress in multi-pass laser welded 5A06 alloy ultra-thick plate[J]. Journal of Materials Research and Technology,2024,28:4116-4130. [Baidu Scholar]
Liang G D,Qin G L,Cao P Z,et al. Evolutions of temperature field and stress field in narrow gap oscillating laser welding process based on equivalent heat source[J]. Journal of Materials Research and Technology,2024,28:154-167. [Baidu Scholar]
Badawy K,Syarif J. A multiscale approach for modeling metal laser welding[J]. AIP Advances,2021,11(3):35308. [Baidu Scholar]
Tang W M,Huang Y M,Wang X H,et al. An investigation on microstructure and mechanical properties of H62 brass thin-sheet by fiber laser welding: Experiments and multi-scale simulations[J]. Optics & Laser Technology,2024,171:110376. [Baidu Scholar]
Gao Q H,Jin C,Yang Z B. Morphology and texture characterization of grains in laser welding of aluminum alloys[J].Welding in the World,2021,65(3):475-483. [Baidu Scholar]
Gu H,Väistö T,Wei C,et al. A coupled ray-tracing based CFD and cellular automaton model for predicting molten pool formation and microstructure evolution in narrow gap laser welding[J]. International Journal of Heat and Mass Transfer,2023,209:124115. [Baidu Scholar]
Tan W D,Shin Y C. Multi-scale modeling of solidification and microstructure development in laser keyhole welding process for austenitic stainless steel[J]. Computational Materials Science,2015,98:446-458. [Baidu Scholar]
Kang Y,Zhan X H,Qi C Q,et al. Grain growth and texture evolution of weld seam during solidification in laser beam deep penetration welding of 2219 aluminum alloy[J]. Materials Research Express,2019,6(11):1165. [Baidu Scholar]
Han C,Jiang P,Geng S N,et al. Ultra grain refinement and mechanical properties improvement of all-weld-metal for medium-thick Al-Li alloy via laser beam oscillation and in-situ alloying[J]. Optics & Laser Technology,2024,168:109965. [Baidu Scholar]
Han C,Jiang P,Geng S N,et al. Multi-physics multi-scale simulation of unique equiaxed-to-columnar-to-equiaxed transition during the whole solidification process of Al-Li alloy laser welding[J]. Journal of Materials Science & Technology,2024,171:235-251. [Baidu Scholar]
Han C,Jiang P,Geng S N,et al. Inhomogeneous microstructure distribution and its formation mechanism in deep penetration laser welding of medium-thick aluminum-lithium alloy plates[J]. Optics & Laser Technology,2023,167:109783. [Baidu Scholar]
Wang L,Wei Y H,Chen J C,et al. Macro-micro modeling and simulation on columnar grains growth in the laser welding pool of aluminum alloy[J]. International Journal of Heat and Mass Transfer,2018,123:826-838. [Baidu Scholar]
Geng S N,Jiang P,Guo L Y,et al. Multi-scale simulation of grain/sub-grain structure evolution during solidification in laser welding of aluminum alloys[J]. International Journal of Heat and Mass Transfer,2020,149:119252. [Baidu Scholar]
Jiang P,Gao S,Geng S N,et al. Multi-physics multi-scale simulation of the solidification process in the molten pool during laser welding of aluminum alloys[J]. International Journal of Heat and Mass Transfer,2020,161:120316. [Baidu Scholar]
李有智. 中厚板万瓦级激光穿透焊接过程宏细观建模与工艺研究[D]. 湖北:华中科技大学,2022. [Baidu Scholar]
LI Y Z. Macro and Micro Modeling and Process Research of Million Level Power Laser Welding Process for Medium Thick Plate[D]. Hubei: Huazhong University of Science and Technology, 2022. [Baidu Scholar]
Related Author
Related Institution