Current Status and Prospect of Multi-Scale Numerical Simulation of Laser Welding Process
- Vol. 54, Issue 8, Pages: 8-19(2024)
Published: 25 August 2024
DOI: 10.7512/j.issn.1001-2303.2024.08.02
扫 描 看 全 文
Published: 25 August 2024 ,
扫 描 看 全 文
梁国栋,董彬,秦国梁.激光焊接过程多尺度数值模拟研究现状与展望[J].电焊机,2024,54(8):8-19.
LIANG Guodong, DONG Bin, QIN Guoliang.Current Status and Prospect of Multi-Scale Numerical Simulation of Laser Welding Process[J].Electric Welding Machine, 2024, 54(8): 8-19.
激光焊接技术作为一种先进焊接技术已被广泛应用在高端制造业中,但匙孔和熔池复杂的热力行为很大程度上决定了接头质量。因此,研究揭示激光-匙孔-熔池之间热力耦合行为规律及其对焊接质量的影响,对激光焊接工艺开发及其应用推广具有重要意义,但其很难用试验的方法进行研究。数值模拟以其成本低、效率高等优势,已被广泛应用于焊接过程多物理场行为等焊接基础理论研究,目前,激光焊接多物理场研究中已开发了不同尺度的数值模拟方法。基于国内外研究成果的归纳分析,归结总结了激光焊接在原子尺度、微观尺度、宏观尺度以及多尺度耦合数值模拟中采用的主要方法及取得的主要进展,根据激光焊接过程多尺度数值模拟发展现状,展望了其未来发展趋势。
As an advanced welding technology
laser welding technology has been widely used in high-end manufacturing industries
while the complex thermodynamic behaviors of the keyhole and the molten pool determines the quality of the joint
which has influences on the further development and the applications of laser welding technology. Numerical simulation methods have been widely used in basic theoretical research of welding such as multi-physical filed behaviors of welding process because of its their low cost and high efficiency. At present
numerical simulation methods with different scales had been developed in the multi-physics field research of laser welding. Based on the research achievements at home and abroad
the main methods and research contents used in the numerical simulation of laser welding at the atomic scale
micro-scale
macro-scale
and multi-scale coupling were summarized in this paper
and their characteristics were analyzed. Finally
the prospect of the development of multi-scale numerical simulation of laser welding was discussed.
激光焊接多尺度匙孔熔池数值模拟
laser weldingmulti-scalekeyholemolten poolnumerical simulation
Raja Kumar M, Tomashchuk I, Jouvard J, et al. High-speed imaging of vapor plume in the treatment of dissimilar Aluminum/Titanium interface with Yb:YAG laser pulse[J]. Journal of Advanced Joining Processes, 2022, 5: 100097.
Üstündağ Ö, Bakir N, Gumenyuk A, et al. Influence of oscillating magnetic field on the keyhole stability in deep penetration laser beam welding[J]. Optics & Laser Technology,2021,135:106715.
Seto N,Katayama S,Matsunawa A. High-speed simultaneous observation of plasma and keyhole behavior during high power CO2 laser welding: Effect of shielding gas on porosity formation[J]. Journal of Laser Applications,2000,12(6):245-250.
Wolff S J,Gould B,Parab N,et al. Preliminary Study on the Influence of an External Magnetic Field on Melt Pool Behavior in Laser Melting of 4140 Steel Using In-Situ X-Ray Imaging[J]. Journal of Micro and Nano - Manufacturing,2020,8(4):041016.
张冬妮. NiTi SMA/304 SS激光焊HEA填充粉末设计及接头组织性能研究[D]. 北京:北京工业大学,2022.
ZHANG D N. Study on Hea Powder Design and Microstructure and Properties of NiTi SMA/304 SS Laser Welding[D]. Beijing: Beijing University of Technology,2022.
田伟. Mg/Al异种金属激光焊接试验研究[D]. 湖南:湖南大学,2013.
TIAN W. Experimental Study on the Laser Welding of Magnesium and Aluminum Dissimilar Metal[D]. Hunan: Hunan University,2013.
Zhang Y T,Wang W X,Li Z Y,et al. Study of the brittleness mechanism of aluminum/steel laser welded joints with copper and vanadium interlayers[J]. Optics & Laser Technology,2023,163:109319.
Li Y L,Liu Y R,Yang J. First principle calculations and mechanical properties of the intermetallic compounds in a laser welded steel/aluminum joint[J]. Optics & Laser Technology,2020,122:105875.
Shi Y C,Li Z Q,Yin C M,et al. Effect of alloying elements Cu and Ni on mechanical properties of steel/aluminum laser welded joints[J].Optik,2022,255:168707.
Zhou D W,Xu S H,Zhang L J,et al. Microstructure, mechanical properties,and electronic simulations of steel/aluminum alloy joint during deep penetration laser welding[J]. The International Journal of Advanced Manufacturing Technology,2017,89(1-4):377-387.
Dai J,Yu B L,Ruan Q D,et al. Improvement of the Laser-Welded Lap Joint of Dissimilar Mg Alloy and Cu by Incorporation of a Zn Interlayer[J]. Materials, 2020,13(9):2053.
Feng S S,Zhou Y Q,Zhu Z Q,et al. Microstructure and Mechanical Properties of Laser-Welded Joint of Tantalum and Stainless Steel[J].Metals,2022,12(10):1638.
朱忠尹. CrCoNi中熵合金超声辅助激光焊工艺及接头服役性能研究[D]. 四川: 西南交通大学,2021.
ZHU Z Y. Research on Ultrasonic Assisted Laser Welding Technology and Service Performance of Welded Joints of CrCoNi Medium Entropy Alloy[D]. Sichuan: Southwest Jiaotong University,2021.
刘世恩. 基于分子动力学锆基非晶结晶及连接界面机制研究[D]. 甘肃:兰州理工大学,2021.
LIU S. Investigation on Crystallization and Bonding Zr-base Metallic Glasses via Molecular Dynamic Simulation[D]. Gansu: Lanzhou University of Technology,2021.
Yan S H,Zhou H Y,Zhu Z Y,et al. High strength-ductility synergy in a laser welded dissimilar joint of CrCoNi medium-entropy alloy and stainless steel[J]. Materials Science and Engineering:A,2022,840:142854.
Zhu Z Y,Yan S H,Chen H,et al. Unprecedented combination of strength and ductility in laser welded NiCoCr medium entropy alloy joints[J]. Materials Science and Engineering:A,2021,803:140501.
Luan S Y,Yu S T,Gui C Q,et al. Atomic-scale structural evolution and welding deformations of laser welded joints in Ag nanowire connectors on homogeneous substrates[J]. Japanese Journal of Applied Physics,2020,59(11):115002.
黄彦琴. Vit1非晶合金的激光焊接特性与工艺研究[D]. 甘肃:兰州理工大学,2022.
HUANG Y Q. Study on Laser Welding Characteristics and Process of Vit1 Amorphous Alloy[D]. Gansu: Lanzhou University of Technology,2022.
闻锦程,张琳,吴寒,等. 飞秒激光作用铝-玻璃界面的分子动力学模拟研究[J]. 激光与光电子学进展, 2023,60(1):259-267.
WEN J C,ZHANG L,WU H,et al. Molecular Dynamics Simulation of Aluminum-Fused Silica Interface Shot by Femtosecond Laser[J]. Laser & Optoelectronics Progress,2023,60(1):259-267.
辜诚. 铝合金激光焊接三维微观组织及冶金气孔形成与演变模拟[D]. 江苏:南京航空航天大学,2017.
GU C.Simulation of Formation and Evolution of Three-Dimensional Microstructure and Metallurgy Porosity in the Laser Beam Welding of Aluminum Alloy[D]. Jiangsu: Nanjing University of Aeronautics and Astronautics,2017.
黄义. 高速列车钛合金激光焊接接头微观组织结构分析[D]. 湖南:中南大学,2022.
HUANG Y. The Microstructure Analysis of Welded Joints of Titanium Alloy Used for High-Speed Train in Laser Welding[D]. Hunan: Central South University,2022.
王磊. 2A14铝合金激光焊接熔池微观组织演变相场法研究[D]. 江苏:南京航空航天大学,2018.
WANG L. Phase Field Investigation on Microstructure Evolution in the Laser Welding Pool of 2A14 Aluminum Alloy[D]. Jiangsu: Nanjing University of Aeronautics and Astronautics,2018.
Wei H L,Elmer J W,Debroy T. Crystal growth during keyhole mode laser welding[J]. Acta Materialia,2017,133:10-20.
高启涵. 1060铝合金激光焊焊缝晶粒生长及对接头力学性能的影响[D]. 辽宁:大连交通大学,2020.
GAO Q H. Grain Growth and its Influence on the Mechanical Properties of Laser-Welded 1060 Aluminumalloy[D]. Liaoning:Dalian Jiaotong University,2020.
王力群. 激光焊接热影响区晶粒长大Monte Carlo模拟[D]. 湖北:华中科技大学,2004.
WANG L Q. Monte Carlo Simulation of Grain Growth in the Heat-Affected-Zone of Laser Welding[D]. Hubei: Huazhong University of Science and Technology,2004.
Li M Y,Kannatey E. Monte Carlo Simulation of Heat-Affected Zone Microstructure in Laser-Beam-Welded Nickel Sheet[J]. Welding Journal,2002,3:37-44.
Gu C,Wei Y,Yu F, et al. Cellular Automaton Study of Hydrogen Porosity Evolution Coupled with Dendrite Growth During Solidification in the Molten Pool of Al-Cu Alloys[J]. Metallurgical and materials transactions. A,Physical metallurgy and materials science,2017,48(9):4314-4323.
刘芸. 铝锂合金激光焊接熔池凝固过程微观组织建模与仿真研究[D]. 江苏:南京航空航天大学,2018.
LIU Y. Numerical Study on Microstructural Evolution in the Molten Pool of Laser Beam Welding for Al-Li alloy[D].Jiangsu: Nanjing University of Aeronautics and Astronautics, 2018.
李玉斌. 铍激光焊接性研究及焊接过程微观组织模拟[D]. 四川:中国工程物理研究院,2009.
LI Y B. Study of Beryllium Laser Weldability and Microstructure Simulation of the Welding Process[D]. Sichuan: China Academy of Engineering Physics,2009.
Dey I,Schätti N,Gerstgrasser M,et al. CA single track simulation of laser conduction welding with stainless steel 316L (1.4404)[J]. Procedia CIRP,2022,113:301-306.
Guo L Y,Han C,Ren L Y,et al. Effect of Transient Thermal Conditions on Columnar-to-Equiaxed Transition during Laser Welding: A Phase-Field Study[J]. Metals,2022,12(4):571.
Xiong L D,Zhu G L,Mi G Y,et al. A phase-field simulation of columnar-to-equiaxed transition in the entire laser welding molten pool[J]. Journal of Alloys and Compounds, 2021,858:157669.
Sheikhi M,Farhangian M,Jabbareh M A,et al. Heat affected zone evolution in fine grained aluminum alloys during laser welding: Phase-field simulation and analytical investigation[J]. Optics & Laser Technology, 2024,174:110559.
Yang C L,Yang F,Meng X M,et al. Phase-field simulation of the dendrite growth in aluminum alloy AA5754 during alternating current electromagnetic stirring laser beam welding[J]. International Journal of Heat and Mass Transfer,2024,218:124754.
Mi G Y,Xiong L D,Wang C M,et al.Two-dimensional phase-field simulations of competitive dendritic growth during laser welding[J]. Materials & Design,2019,181:107980.
Bailey N S,Hong K,Shin Y C. Comparative assessment of dendrite growth and microstructure predictions during laser welding of Al 6061 via 2D and 3D phase field models[J]. Computational Materials Science, 2020,172:109291.
Jiang M,Li B C,Chen X,et al. Numerical study of thermal fluid dynamics and solidification characteristics during continuous wave and pulsed wave laser welding[J]. International Journal of Thermal Sciences, 2022,181:107778.
Li L Q,Peng G C,Wang J M,et al. Numerical and experimental study on keyhole and melt flow dynamics during laser welding of aluminium alloys under subatmospheric pressures[J]. International Journal of Heat and Mass Transfer,2019,133:812-826.
Ai Y W,Liu X Y,Huang Y,et al. Numerical analysis of the influence of molten pool instability on the weld formation during the high speed fiber laser welding[J]. International Journal of Heat and Mass Transfer,2020,160:120103.
Chen J C,Chen X M,Liu X J,et al. Numerical investigation on keyhole stability and weld pool dynamics during quasi-continuous laser beam welding of Ti6Al4V plate using constant and modulated high-frequency pulsed heat input[J]. International journal of advanced manufacturing technology,2022,121(1-2):229-247.
Ai Y W,Dong G Y,Yuan P C,et al. The influence of keyhole dynamic behaviors on the asymmetry characteristics of weld during dissimilar materials laser keyhole welding by experimental and numerical simulation methods[J]. International Journal of Thermal Sciences,2023,190:108289.
Chen S,Zhao Y Q,Tian S H,et al. Study on keyhole coupling and melt flow dynamic behaviors simulation of 2219 aluminum alloy T-joint during the dual laser beam bilateral synchronous welding[J]. Journal of Manufacturing Processes,2020,60:200-212.
Tang F Y,Wei Y H,Qian L G,et al. Asymmetry of keyhole and weld pool geometry in PLBW of tailor-welded steel sheets with edge misalignment: Numerical modeling and experimental validation[J]. Optics & Laser Technology,2023,161:109205.
Chen J C,Chen X M,Liu X J,et al. Numerical investigation on keyhole collapsing and rebuilding behavior during pulsed laser beam welding of Ti6Al4V titanium alloy under various pulse frequencies[J]. Applied physics. A, Materials Science & Processing,2022,128(2): 140.
Wu D S,Hua X M,Huang L J,et al. Elucidation of keyhole induced bubble formation mechanism in fiber laser welding of low carbon steel[J]. International Journal of Heat and Mass Transfer,2018,127:1077-1086.
Huang L J,Hua X M,Wu D S,et al. Effect of magnesium content on keyhole-induced porosity formation and distribution in aluminum alloys laser welding[J]. Journal of Manufacturing Processes,2018,33:43-53.
Sun Y,Li L Q,Hao Y,et al. Numerical modeling on formation of periodic chain-like pores in high power laser welding of thick steel plate[J]. Journal of Materials Processing Technology,2022,306:117638.
Lin R Q,Wang H P,Lu F G,et al. Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys[J]. International Journal of Heat and Mass Transfer,2017,108:244-256.
Lu F G,Li X B,Li Z G,et al. Formation and influence mechanism of keyhole-induced porosity in deep-penetration laser welding based on 3D transient modeling[J]. International Journal of Heat and Mass Transfer,2015,90:1143-1152.
He Y J,Zeng Y D,Li Z Y,et al. The effect of laser segmented skip welding on welding distortion and residual stress in butt weld of 6061 aluminum alloy thin plate[J]. International Journal of Advanced Manufacturing Technology,2023,124(10):3293-3309.
Zhang G Y,Li W H,Xu G J,et al. Simulation of temperature field and residual stress in high-power laser self-melting welding process of CLF-1 steel medium-thick plate[J]. Fusion Engineering and Design,2023,195:113936.
Gao S,Geng S N,Jiang P,et al. Numerical study on the effect of residual stress on mechanical properties of laser welds of aluminum alloy 2024[J]. Optics & Laser Technology,2022,146:107580.
Yan S H,Meng Z,Chen B,et al. Prediction of temperature field and residual stress of oscillation laser welding of 316LN stainless steel[J]. Optics & Laser Technology,2022,145:107493.
Xiong L D,Mi G Y,Wang C M,et al. Numerical Simulation of Residual Stress for Laser Welding of Ti-6Al-4V Alloy Considering Solid-State Phase Transformation[J]. Journal of Materials Engineering and Performance,2019,28(6):3349-3360.
Bu H C,Zhan X H,Yang H Y,et al. Numerical simulation of thermal distribution and residual stress characteristic for laser wobble joining of CFRTP and Ti-6Al-4V alloy[J].Journal of Manufacturing Processes,2022,79:562-575.
Zhou X F,Cao X B,Zhang F,et al. Numerical and experimental investigation of thermal stress distribution in laser lap welding of Ti6Al4V and 2024 alloy plates[J]. the International Journal of Advanced Manufacturing Technology,2022,118(5-6):1427-1440.
Yan H Z,Zeng X G,Cui Y H,et al. Numerical and experimental study of residual stress in multi-pass laser welded 5A06 alloy ultra-thick plate[J]. Journal of Materials Research and Technology,2024,28:4116-4130.
Liang G D,Qin G L,Cao P Z,et al. Evolutions of temperature field and stress field in narrow gap oscillating laser welding process based on equivalent heat source[J]. Journal of Materials Research and Technology,2024,28:154-167.
Badawy K,Syarif J. A multiscale approach for modeling metal laser welding[J]. AIP Advances,2021,11(3):35308.
Tang W M,Huang Y M,Wang X H,et al. An investigation on microstructure and mechanical properties of H62 brass thin-sheet by fiber laser welding: Experiments and multi-scale simulations[J]. Optics & Laser Technology,2024,171:110376.
Gao Q H,Jin C,Yang Z B. Morphology and texture characterization of grains in laser welding of aluminum alloys[J].Welding in the World,2021,65(3):475-483.
Gu H,Väistö T,Wei C,et al. A coupled ray-tracing based CFD and cellular automaton model for predicting molten pool formation and microstructure evolution in narrow gap laser welding[J]. International Journal of Heat and Mass Transfer,2023,209:124115.
Tan W D,Shin Y C. Multi-scale modeling of solidification and microstructure development in laser keyhole welding process for austenitic stainless steel[J]. Computational Materials Science,2015,98:446-458.
Kang Y,Zhan X H,Qi C Q,et al. Grain growth and texture evolution of weld seam during solidification in laser beam deep penetration welding of 2219 aluminum alloy[J]. Materials Research Express,2019,6(11):1165.
Han C,Jiang P,Geng S N,et al. Ultra grain refinement and mechanical properties improvement of all-weld-metal for medium-thick Al-Li alloy via laser beam oscillation and in-situ alloying[J]. Optics & Laser Technology,2024,168:109965.
Han C,Jiang P,Geng S N,et al. Multi-physics multi-scale simulation of unique equiaxed-to-columnar-to-equiaxed transition during the whole solidification process of Al-Li alloy laser welding[J]. Journal of Materials Science & Technology,2024,171:235-251.
Han C,Jiang P,Geng S N,et al. Inhomogeneous microstructure distribution and its formation mechanism in deep penetration laser welding of medium-thick aluminum-lithium alloy plates[J]. Optics & Laser Technology,2023,167:109783.
Wang L,Wei Y H,Chen J C,et al. Macro-micro modeling and simulation on columnar grains growth in the laser welding pool of aluminum alloy[J]. International Journal of Heat and Mass Transfer,2018,123:826-838.
Geng S N,Jiang P,Guo L Y,et al. Multi-scale simulation of grain/sub-grain structure evolution during solidification in laser welding of aluminum alloys[J]. International Journal of Heat and Mass Transfer,2020,149:119252.
Jiang P,Gao S,Geng S N,et al. Multi-physics multi-scale simulation of the solidification process in the molten pool during laser welding of aluminum alloys[J]. International Journal of Heat and Mass Transfer,2020,161:120316.
李有智. 中厚板万瓦级激光穿透焊接过程宏细观建模与工艺研究[D]. 湖北:华中科技大学,2022.
LI Y Z. Macro and Micro Modeling and Process Research of Million Level Power Laser Welding Process for Medium Thick Plate[D]. Hubei: Huazhong University of Science and Technology, 2022.
相关作者
相关机构