Research on the Application of Galvo Laser Flying Welding Technology in the Production of New Energy Storage Modules
- Vol. 54, Issue 7, Pages: 100-104(2024)
Published: 25 July 2024
DOI: 10.7512/j.issn.1001-2303.2024.07.14
扫 描 看 全 文
Published: 25 July 2024 ,
扫 描 看 全 文
赵辛龙,杨尚磊,田嘉伟,等.振镜激光飞行焊接技术在新能源储能模组生产中的应用研究[J].电焊机,2024,54(7):100-104.
ZHAO Xinlong, YANG Shanglei, TIAN Jiawei, et al.Research on the Application of Galvo Laser Flying Welding Technology in the Production of New Energy Storage Modules[J].Electric Welding Machine, 2024, 54(7): 100-104.
随着新能源技术的不断进步,新能源储能模组装备的生产效率显得尤为重要。提出了一种基于振镜激光飞行焊接技术的解决方案。该方案通过设计连贯的生产设备,并引入振镜激光飞行焊接技术。振镜激光飞行焊接技术具有非接触性、高精度、动态运行等优势,能够有效缩短加工时间,提高产品质量,降低人工成本,并推动新能源产业的发展。主要论述新能源储能模组的生产设备、生产工艺路线以及振镜激光飞行焊接的优势等,经过现场调试及工艺试验,掌握了振镜激光飞行焊接核心技术,实现了新能源储能模组的稳定高效应用。并验证了其在新能源储能模组生产过程中的可行性。
With the continuous advancement of new energy technology
the production efficiency of new energy storage module equipment has become particularly important. A solution based on scanning laser flight welding technology is proposed. This solution involves the design of coherent production equipment and the introduction of scanning laser flight welding technology. Scanning laser flight welding technology offers advantages such as non-contact operation
high precision
and dynamic running
which can effectively reduce processing time
improve product quality
lower labor costs
and promote the development of the new energy industry. This paper mainly discusses the production equipment
process route
and advantages of scanning laser flight welding for new energy storage modules. Through on-site debugging and process testing
the core technology of scanning laser flight welding has been mastered
enabling the stable and efficient application of new energy storage modules. The feasibility of this technology in the production process of new energy storage modules has been verified.
振镜激光焊接技术新能源储能模组工艺路线飞行焊接
galvanometer laser welding technologynew energy storage moduleprocess routeflight welding
梁先盛. 自动焊接在机械焊接中的运用探究[J]. 机械管理开发, 2022, 37(6): 308-310.
LIANG S X. Exploration on the Application of Automatic Welding in Mechanical Welding [J]. Mechanical Management and Development,2022,37(6):308-310.
林中坚. 汽车座椅激光焊接工艺研究介绍[J]. 汽车零部件,2014(1):53-58.
LIN Z J. Introduction to the Research on Laser Welding Technology for Automotive Seats[J]. Auto Parts,2014(1):53-58.
李昊,谢宁,熊志明,等. 车门内板总成激光飞行焊接系统设计开发[J]. 中国机械,2023(10):31-35.
LI H,XIE N,XIONG Z M,et al. Design and Development of Laser Flight Welding System for Door Inner Panel Assembly[J]. China Machinery,2023(10):31-35.
赵建姣,陈冲,汉俊梅,等. 白车身车门激光飞行焊接技术及工艺调试[J]. 汽车工艺与材料,2022(6):33-37.
ZHAO J J,CHEN C,HAN J M,et al. Laser Flight Welding Technology and Process Debugging for Automotive Body Door[J]. Automotive Technology and Materials,2022(6):33-37.
赵宇龙. 激光焊接技术在动力电池制造中的应用[J]. 世界制造技术与装备市场,2022(3):64-68.
ZHAO Y L. Application of Laser Welding Technology in Power Battery Manufacturing[J]. World Manufacturing Technology and Equipment Market,2022(3):64-68.
王泽兴,黄思德,黄荣军,等. 新能源汽车全生命周期数字化技术应用及发展趋势[J]. 新型工业化,2023,13(7):78-86+94.
WANG Z X,HUANG S D,HUANG R J,et al. Application and Development Trend of Digital Technology in the Whole Life Cycle of New Energy Vehicles [J]. New Industrialization,2023,13(7):78-86+94.
黄锋云,莫燕铭,杨琦,等. 汽车电池组构成及装配工艺分析[J]. 时代汽车,2023(15):123-125.
HUANG F Y,MO Y M,YANG Q,et al. Analysis of Composition and Assembly Process of Automotive Battery Pack[J]. Time Auto,2023(15):123-125.
杨彪,刘福运,檀财旺,等. 动力电池激光焊接技术的应用现状与展望[J]. 机械制造文摘(焊接分册),2023(2):1-9+30.
YANG B,LIU F Y,TAN C W,et al. Application Status and Prospects of Laser Welding Technology for Power Battery[J]. Mechanical Manufacturing Abstracts (Wel-ding Volume),2023(2):1-9+30.
胡德志,周帅帅. 激光飞行焊技术在汽车车身上的应用[J]. 汽车实用技术,2019(12):60-61+67.
汤星. 基于振镜系统的激光飞行焊接技术研究[D]. 广东: 广东工业大学, 2020.
TANG X. Research on Laser Flight Welding Technology Based on Galvanometer System [D]. Guangdong:Guangdong University of Technology,2020.
Ortega Delgado M A,Lasagni A F. Reducing field distortion for galvanometer scanning system using a vision system[J]. Optics and Lasers in Engineering,2016,86:106-114.
Huang Z,Li D. A 3D reconstruction method based on one-dimensional galvanometer laser scanning system[J].Optics and Lasers in Engineering,2023,170:107787.
Kamat S,Cai W,Rinker T J,et al. A novel integrated process-performance model for laser welding of multi-layer battery foils and tabs[J]. Journal of Materials Processing Technology,2023,320:118121.
Stavropoulos P,Bikas H,Sabatakakis K,et al. Quality assurance of battery laser welding: A data-driven approach[J]. Procedia CIRP,2022,111:784-789.
Lai Z,Kong D,Zhou J,et al. Novel design of weld vector route for dissimilar nonferrous plates laser welding in battery manufacturing for electric vehicles[J]. Energy Reports,2022,8:230-239.
Li X,Liu B,Mei X,et al. Development of an In-Situ Laser Machining System Using a Three-Dimensional Galvanometer Scanner[J]. Engineering,2020,6(1):68-76.
相关文章
相关作者
相关机构