Research Status of High-Efficiency 10 000-Watt Laser Welding
- Vol. 54, Issue 5, Pages: 1-16(2024)
Published: 25 May 2024
DOI: 10.7512/j.issn.1001-2303.2024.05.01
扫 描 看 全 文
Published: 25 May 2024 ,
扫 描 看 全 文
尹东坤,徐锴,滕彬,等.万瓦级激光高效焊接研究现状[J].电焊机,2024,54(5):1-16.
YIN Dongkun, XU Kai, TENG Bin, et al.Research Status of High-Efficiency 10 000-Watt Laser Welding[J].Electric Welding Machine, 2024, 54(5): 1-16.
随着激光热源额定功率持续增长,高达万瓦级的激光焊接技术已在国内外成为焊接领域的热点。系统性地阐述了国内外万瓦级激光焊接技术的研究现状、发展趋势以及存在的问题,包括激光自熔焊、真空激光焊、激光-电弧复合焊和激光-埋弧耦合焊,主要涉及焊缝成形、熔池行为特征、羽辉物理特性、焊接缺陷的抑制。研究发现,万瓦级激光焊接具有显著优势,包括高焊接速度、低热影响区、实现深宽比更优的焊接效果和高效率焊接,但也存在工艺窗口窄、易产生飞溅等挑战。真空激光焊接能够显著增加焊缝熔深,提高焊缝质量,激光-电弧复合焊具有高效、适应性强等特点,而激光-埋弧耦合焊接仍处于起步阶段,需要进一步研究。
As a typical representative of current high-efficiency and high-quality welding methods
laser welding technology has been utilized in various fields with technical advantages such as high stability and low deformation. With the continuous improvement of the rated power of the laser heat source
10 000-watt high-power laser welding has become a popular international cutting-edge welding technology. Utilizing the ultra-high power density of 10 000-watt laser
the welded seam with greater depth-to-width ratio characteristics can be obtained. Under the same plate thickness conditions
the use of 10 000-watt laser welding can reduce the number of layers of weld passes
thus reducing the number of interlayer cleanup and reducing the number of unnecessary beveling
etc.
which can greatly improve the welding efficiency. The paper summarizes and analyzes the domestic and international research status
development trend and problems of 10 000-watt laser self-melting welding
10 000-watt vacuum laser welding
10 000-watt laser-arc hybrid welding and 10 000-watt laser submerged arc coupling welding. It mainly involves weld shaping
molten pool behavior characteristics
physical properties of plume glow
and inhibition of welding defects.
万瓦级激光激光焊接金属蒸气行为缺陷抑制真空激光焊激光-电弧复合焊激光-埋弧复合焊
10 000-watt laserlaser weldinglaser-arc hybrid weldingresearch status
王家淳. 激光焊接技术的发展与展望[J]. 激光技术,2001(1):48-54.
WANG J C.Development and expectation of laser welding technology[J]. Laser Technology,2001(1):48-54.
Goussain J C,Becker A,Chehaibou A,et al. Heavy-section welding with very high power laser beams: the challenge[C]//Lasers in Material Processing. International Society for Optics and Photonics, 1997, 3097: 118-129.
Ono M,Shiozaki T,Shinbo Y,et al. Development of high power laser pipe welding process[J]. Quarterly Journal of the Japan welding Society,2001,19(2):233-240.
黄坚,高志国,蔡艳,等. 船用钢板的高功率CO2激光焊接[J]. 电焊机,2008,38(3):7-11.
HUANG J,GAO Z G,CAI Y,et al. High power CO2 laser welding of shipbuilding steel[J]. Electric Welding Machine,2008,38(3):7-11.
黄坚,李铸国,唐新华.中厚板的高功率激光焊接[J]. 航空制造技术,2010(2):26-29.
HUANG J,LI Z G,TANG X H. High-Power Laser Welding of Plate[J]. Aeronautical Manufacturing Technology, 2010(2): 26-29.
胡连海,黄坚,李铸国,等.高功率CO2激光焊接管线钢接头的组织与性能[J]. 中国激光,2009(12):3174-3178.
HU L H,HUANG J,LI Z G,et al. Microstructure and Properties of High Power CO2 Laser Welded Pipeline Steel[J]. Chinese Journal of Lasers, 2009(12): 3174-3178.
左铁钏,张冬云,祁俊峰,等.关于大功率CO2激光器在船舶制造中应用的探讨[J]. 焊接,2007(5):79-83.
ZUO T X,ZHANG D Y,QI J F,et al. Application of high power CO2 laser welding technology to shipbuilding industry[J]. Welding & Joining, 2007(5):79-83.
任成高,申晓龙,张明军,等. 高功率激光器及应用于厚板焊接的技术进展[J]. 热加工工艺,2016,45(1): 11-15.
REN C G,SHEN X L,ZHANG M J,et al. Technical Progress of High Power Lasers and Its Applications in Thick Plate Welding[J]. Hot Working Technology,2016,45(1):11-15.
Sokolov M,Salminen A,Kuznetsov M,et al. Laser welding and weld hardness analysis of thick section S355 structural steel[J]. Materials and Design,2011,32(10):5127-5131.
Katayama S,Mizutani M,Kawahito Y,et al. Fundamental research of 100 kW fiber laser welding technology[C]//Proceeding of Lasers in Manufacturing Conference,Munich,Germany,2015.
信纪军,方超,宋云涛,等. 20 mm厚316LN不锈钢板的超高功率光纤激光自熔焊[J]. 中国激光,2018,45(5):94-101.
XIN J J,FANG C,SONG Y T,et al. Autogenous Laser Welding of 20 mm Thick 316LN Stainless Steel Plate by Ultra High Power Fiber Lasers[J]. Chinese Journal of Lasers,2018,45(5):94-101.
Banas C M. High power laser welding[J]. Optical Engineering,1978(17):210-216.
Zhang X D,Ashida E,Tarasawa S,et al. Welding of thick stainless steel plates up to 50 mm with high brig-htness lasers[J]. Journal of Laser Applications,2011,23:1-7.
Grupp M,Klinker K,Cattaneo S. Welding of high thicknesses using a fibre optic laser up to 30 kW[J]. Welding International,2013,27(2):109-112.
Kawahito Y,Mizutani M,Katayama S. High quality welding of stainless steel with 10 kW high power fibre laser[J]. Science and Technology of Welding and Joining,2009,14(4):288-294.
Kawahito Y,Matsumoto N,Abe Y,et al. Relationship of laser absorption to keyhole behavior in high power fiber laser welding of stainless steel and aluminum alloy[J]. Journal of Materials Processing Technology,2011,211(10):1563-1568.
Zhang X,Ashida E,Katayama S,et al. Deep penetration welding of thick section steels with 10 kW fiber laser[J]. Quarterly Journal of the Japan Welding Society,2009,27(2):64-68.
张明军. 万瓦级光纤激光深熔焊接厚板金属蒸气行为与缺陷控制[D]. 湖南:湖南大学, 2013.
ZHANG M J. Study on the Behavior of Metallic Vapor Plume and DefectsControl during Deep Penetration Laser Welding of Thick Plate Using10 kW Level High Power Fiber Laser[D].Hunan:Hunan University,2013.
Zhang M,Chen G,Zhou Y,et al. Optimization of deep penetration laser welding of thick stainless steel with a 10 kW fiber laser[J]. Materials & Design,2014,53:568-576.
Li S,Chen G,Katayama S,et al. Relationship between spatter formation and dynamic molten pool during high-power deep-penetration laser welding[J]. Applied Surface Science,2014,303(6):481-488.
Sokolov M,Salminen A,Somonov V,et al. Laser welding of structural steels: Influence of the edge roughness level[J]. Optics & Laser Technology, 2012, 44(7): 2064-2071.
Sokolov M,Salminen A. Experimental investigation of the influence of edge morphology in high power fiber laser welding[J]. Physics Procedia,2012,39:33-42
Sokolov M, Salminen A. Methods for improving laser beam welding efficiency[J]. Physics Procedia, 2014,56:450-457.
Bergström D,Powell J,Kaplan A F H. The absorptance of steels to Nd: YLF and Nd:YAG laser light at room temperature[J]. Applied Surface Science,2007,253(11):5017-5028.
Vollertsen F,Grünenwald M S,Rethmeier M,et al. Welding thick steel plates with fibre lasers and GMAW[J]. Welding in the World,2010,54(3-4):62-70.
Pierron N,Sallamand P,Matteï S. Study of magnesium and aluminum alloys absorption coefficient during Nd:YAG laser interaction[J]. Applied Surface Science, 2007, 253(6): 3208-3214.
Kawahito Y,Ohnishi T,Katayama S. In process monitoring and feedback control for stable production of full-penetration weld in continuous wave fibre laser welding[J]. Journal of Physics D: Applied Physics, 2009,42(8):085501.
Matsunawa A,Seto N,Kim J D,et al. Dynamics of keyhole and molten pool in high-power CO2 laser welding[C]//Advanced High-Power Lasers and Applications. International Society for Optics and Photonics, 2000.
Katayama S,Kobayashi Y,Mizutani M,et al. Effect of vacuum on penetration and defects in laser welding[J]. Journal of Laser Applications,2001,13(5):187-192.
Nakamura H,Kawahito Y,Nishimoto K,et al. Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium[J]. Journal of Laser Applications,2015,27(3):032012.
Kawahito Y,Mizutani M,Katayama S. Elucidation of High-Power Fibre Laser Welding Phenomena of Stainless Steel and Effect of Factors on Weld Geometry[J]. Journal of Physics D: Applied Physics,2007,40:5854-5859.
Kawahito Y,Mizutani M,Katayama S. High Quality Welding of Stainless Steel with 10 kW High Power Fibre Laser[J]. Science and Technology of Welding and Joining, 2009,14:288-294.
Kaplan A F H,Westin E M,Wiklund G,et al. Imaging in Cooperation with Modeling of Selected Defect Mechanisms during Fiber Laser Welding of Stainless Steel[J]. International Congress on Applications of Lasers & Electro-optics, 2008,73:1861-1875.
Ilar T,Eriksson I,Powell J,et al. Root Humping in Laser Welding—An Investigation Based on High Speed Imaging[J]. Physics Procedia, 2012,39:27-32.
Kaplan A F H,Wiklund G. Advanced Welding Analysis Methods Applied to Heavy Section Welding with a 15 kW Fibre Laser[J]. Welding in the World, 2009,53:295-300.
Matsuda F,Nakagawa H,Ueyama T. Solidification Crack Susceptibility in Laser Beam Weld Metal of 0.2C-Low Alloy Steels:Effects of Bead Configuration and S and P Contents(Materials, Metallurgy & Weldability)[J]. Quarterly Journal of the Japan Welding Society,1987,7(1):686-692.
Nasim B,Antoni A,Andrey G,et al. Numerical Simulation on the Origin of Solidification Cracking in Laser Welded Thick-Walled Structures[J]. Metals-Open Access Metallurgy Journal,2018,8(6):406.
赵琳,塚本进,荒金吾郎,等. 10 kW光纤激光焊接缺陷的形成[C]//中国机械工程学会焊接学会第十八次全国焊接学术会议,2013:59-62+120.
Katayama S,Kawahito Y,Mizutani M. Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects[J]. Physics procedia, 2010,5:9-17.
You D Y,Gao X D,Katayama S. Review of laser welding monitoring[J]. Science and technology of welding and joining,2014,19(3):181-201.
李时春,陈根余,周聪,等. 万瓦级光纤激光焊接过程中小孔内外等离子体研究[J]. 物理学报,2014,63(10):195-202.
LI S C,CHEN G Y,ZHOU C,et al. Plasma inside and outside keyhole during 10 kW level fiber laser welding[J]. Acta Physica Sinica,2014,63(10):195-202.
Wang C M,Meng X X,Huang W,et al. Role of side assisting gas on plasma and energy transmission during CO2 laser welding[J]. Journal of Materials Processing Technology,2011,211(4):668-674.
Arata Y,Abe N,Oda T. Fundamental phenomena in high power CO2 laser (report II):Vacuum laser welding (welding physics,process & instrument)[J]. Trans‐ actions of JWRI,1985,14(2):217-222.
Katayama S,Kobayashi Y,Mizutani M,et al. Effect of vacuum on penetration and defects in laser welding[J]. Journal of Laser Applications,2001,13(5):187-192.
Jakobs S,Reisgen U. Laser Beam Welding Under Reduced Pressure-Range of Possible Applications for Thick-Plates[J]. Stahlbau,2015,84(9):635-642.
黄瑞生,李想,邹吉鹏,等. Ti6Al4V合金低真空激光焊接头形貌特征分析[J]. 焊接学报,2023,44(09):24-29+130.
HUANG R S,LI X,ZOU J P,et al. Analysis of morphological characteristics of low vacuum laser welded joint of Ti6Al4V alloy[J]. Transactions of The China Welding Institution,2023,44(09):24-29+130.
王继明. 5A06铝合金厚板超高功率真空激光焊接特性研究[D]. 黑龙江:哈尔滨工业大学,2021.
WANG J M. Research on Characteristics of Ultra high Laser Power Welding of Thick 5A06 Plates Under Subatmospheric Pressures[D]. Heilongjiang:Harbin Institute of Technology,2021.
Katayama S,Youhei A,Mizutani M,et al. Development of deep penetration welding technology with high brightness laser under vacuum[J]. Physics Prodedia,2011,12:75-80.
Cai C,Peng G C,Li L Q,et al. Comparative Study on Laser Welding Characteristics of Aluminium Alloy un‐ der Atmospheric and Subatmospheric Pressures[J]. Science and Technology of Welding and Joining,2014,19(7):547-553.
Jiang M,Chen X,Chen Y,et al. Mitigation of poros‐ ity defects in fiber laser welding under low vacuum[J]. Journal of Materials Processing Technology,2020,276:116385.
罗燕. 负压激光焊接过程蒸气羽烟及熔池行为研究[D]. 上海:上海交通大学,2015.
LUO Y. Research on Plasma Plume and Moltenpoolbehavior in Fiber Laser Welding Under Subatmospheric Pressure[D]. Shanghai:Shanghai Jiaotong University,2015.
Zhang C,Li G,Gao M,et al. Microstructure and mechanical properties of narrow gap laser-arc hybrid welded 40 mm thick mild steel[J]. Materials,2017(10):106-110.
Turichin G,Kuznetsov M,Sokolov M,et al. Hybrid Laser Arc Welding of X80 Steel:Influence of Welding Speed and Preheating on the Microstructure and Mechanical Properties[J].Physics Procedia,2015,78:35-44.
Turichin G,Kuznetsov M,Tsibulskiy I,et al. Hybrid laser-arc welding of the high-strength shipbuilding steels:equipment and technology[J]. Physics Procedia,2017,89:156-163.
Ömer Üstündağ,André Fritzsche,Avilov V,et al. Hybrid laser-arc welding of thick-walled ferromagnetic steels with electromagnetic weld pool support[J]. Welding in the World,2018,62(4):767-774.
Wahba M,Mizutani M,Katayama S. Single pass hybrid laser-arc welding of 25 mm thick square groove butt joints[J]. Materials & Design, 2016, 97: 1-6.
Bunaziv I,Akselsen O M,Frostevarg J,et al. Deep penetration fiber laser-arc hybrid welding of thick HSLA steel[J]. Journal of Materials Processing Technology, 2018, 256: 216-228.
井志成,张国瑜,王子健,等. 高效激光-MAG 复合焊接船用高强钢的性能[J]. 中国激光, 2019, 46(08): 111-117.
JING Z C,ZHANG G Y,WANG Z J,et al. Properties of Marine High-Strength Steel by High-Efficiency Laser-MAG Hybrid Welding[J]. Chinese Journal of Lasers, 2019, 46(08): 111-117.
黄瑞生,杨义成,蒋宝,等. 超高功率激光-电弧复合焊接特性分析[J]. 焊接学报,2019,40(12):73-77.
HUANG R S,YANG Y C,JIANG B,et al. Analysis of welding characteristics of ultra-high power laser-arc hybrid welding[J]. Transactions of The China Welding Institution, 2019, 40(12): 73-77.
蒋宝,雷振,黄瑞生,等. 万瓦级光纤激光-MAG 复合焊接焊缝成形[J]. 焊接, 2020(06): 5-11.
JIANG B,LEI Z,HUANG R S,et al. Formation of weld by high-power fiber laser-MAG hybrid welding[J]. Welding & Joining, 2020(06): 5-11.
王志鹏. Q355C激光-MAG复合焊接工艺及接头性能研究[D]. 甘肃:兰州理工大学,2022.
WANG Z P. Study on laser MAG hybrid welding process and joint properties of Q355C[D]. Gansu: Lanzhou University of Technology,2022.
U Reisgen,Olschok S,Jakobs S,et al. Laser beam submerged arc hybrid welding[J]. Physics Procedia,2012,39:75-83.
编辑部网址:http://www.71dhj.comhttp://www.71dhj.com
相关文章
相关作者
相关机构