Study on Microstructure and Properties of K438 Alloy TIG Welding Joint
- Vol. 54, Issue 3, Pages: 152-157(2024)
Published: 25 March 2024
DOI: 10.7512/j.issn.1001-2303.2024.03.23
扫 描 看 全 文
Published: 25 March 2024 ,
扫 描 看 全 文
刘保侠,王红顺,庞义斌,等.镍基焊丝氩弧焊K438合金接头组织与性能研究[J].电焊机,2024,54(3):152-157.
LIU Baoxia, WANG Hongshun, PANG Yibin, et al.Study on Microstructure and Properties of K438 Alloy TIG Welding Joint[J].Electric Welding Machine, 2024, 54(3): 152-157.
针对某型燃气轮机动力涡轮转子叶片磨损失效要求,通过钨极氩弧焊制备了无裂纹的K438接头,分析了K438接头的显微组织和力学性能。结果表明,接头成形美观、无裂纹,堆焊区组织中γ基固溶体上弥散分布着富Cr的柱状、颗粒状、树状等形态各异的M
23
C
6
和M
6
C白色相,结合线硬度达452 HV0.5,堆焊区硬度约278 HV0.5,接头平均抗拉强度403.3 MPa,接头断裂于堆焊区,断裂形式为脆性和韧性混合断裂。
Aiming at the wear and failure requirements of a certain type of gas turbine power turbine rotor blade
a crack-free K438 joint was prepared by TIG welding
and the microstructure and mechanical properties of the K438 joint were analyzed. The results show that the joints are beautifully formed and have no defects such as cracks. The γ-based solid solution in the surfacing area is dispersed with Cr-rich M
23
C
6
and M
6
C white phases such as columnar
granular and dendritic phases. Furthermore
the bonding line hardness is as high as 452 HV0.5
the hardness of the surfacing area is about 278 HV0.5. In addition
the average tensile strength of the joint is 403.3 MPa
and it is fractured in the surfacing area in the mode of brittle and ductile fracture.
K438合金钨极氩弧焊显微组织力学性能
K438 alloynickel based welding wireTIGmicrostructuremechanical properties
张杰,王茂才,翟玉春.先进的燃气轮机叶片粉末冶金修复技术[J].材料导报, 2010, 24(5):110-113.
ZHANG J,WANG M C,ZHAI Y C. An Advanced Powder Metallurgy Remanufactures Technique for GT[J]. Materials Review, 2010, 24(5):110-113.
赵海生,潘晖,张学军,等. 保温时间对K452高温合金钎焊接头组织与性能的影响[J]. 航空材料学报, 2015, 35(3):43-48.
ZHAO H S,PAN H,ZHANG X J,et al. Effect of Holding Time on Microstructure and Mechanical Properties of K452 Superalloy Brazed Joints[J]. Journal of Aeronautical Materials, 2015, 35(3):43-48.
陈犇,雷旭,李巍,等. 某航空发动机涡轮导向器的缺陷分析及修复[J]. 热加工工艺, 2023(15):152-157.
CHEN B,LEI X,LI W,et al. Fault Analysis and Repair of Turbine Nozzle of An Aero-engine[J]. Hot Working Technology, 2023(15):152-157.
Yu J Y, Shi D W, Li Z, et al.Experimental Study on Repairing Large Modulus Rack Cracks by Argon Arc Welding[J]. Materials Science Forum, 2019, 943(8):8-13.
徐志刚,张宗林,吴维山文,等.某型发动机叶片激光熔覆处理的热裂纹敏感性研究[J]. 腐蚀科学与防护技术, 1996, 8(1):56-60.
XU Z G,ZHANG Z L,WUWEI S W,et al. Cracking Susceptibility of Laser Cladding of Cast Nickel Base Alloy K17[J]. Corrsion Science and Protection Technology, 1996, 8(1):56-60.
任心澈.K438镍基高温合金激光熔覆修复组织与性能研究[D]. 江西:南昌航空大学, 2016.
REN X C. Study on microstructure and properties of laser cladding repair of K438 nickel based high-temperature alloy[D]. Jiangxi: Nanchang Hangkong University, 2016.
尹懿,李水涛,晏建武,等. K438精铸件氩弧焊补焊工艺研究[J]. 焊接技术, 2016, 45(11):35-37.
YIN Y,LI S T,YAN J W,et al. Study on K438 precision casting using argon arc repair welding[J]. Welding Technology, 2016, 45(11):35-37.
谢玉江,王茂才,王明生. 高Al、Ti含量镍基高温合金激光、微弧火花表面熔焊处理研究进展及解决熔焊裂纹的途径[J]. 中国表面工程, 2010, 23(05):1-16.
XIE Y J,WANG M C,WANG M S. Recent Status of Surface Treatment of Ni-based Superalloys with High Al and Ti Content by Laser and Electrospark Fusion Welding Process and the Way to Solve Welding Cracking[J].China Surface Engineering,2010,23(05):1-16.
Frederick G, Gandy D, Stover J T .Laser Weld Repair of Service Exposed IN738 and GTD111 Buckets[C]// Asme Turbo Expo: Power for Land, Sea, Air. 2002.
尹懿,张丽玲,李水涛,等. K438高温合金补焊接头热处理裂纹研究[J]. 热加工工艺, 2017, 46(07): 243-245.
YIN Y,ZHANG L L,LI S T,et al. Study on Crack of K438 Superalloy Repair Welding Joint after Heat Treatment[J]. Hot Working Technology, 2017, 46(07):243-245.
陈智君,张群莉,楼程华,等. Inconel 738激光熔覆层的裂纹控制方法[J]. 应用激光, 2013, 33(01):7-13.
CHEN Z J,ZHANG Q L,LOU C H,et al. Methods of Crack Control for Inconel 738 Laser Cladding Layer[J]. Applied Laser, 2013, 33(01):7-13.
中国金属学会高温材料分会. 中国高温合金手册[M]. 北京:中国标准出版社,2012.
Deng D,Ru L P,Brodin H. Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: Sample orientation dependence and effects of post heat treatments[J]. Materials Science Engineering A, 2018, 713(JAN.24):294-294.
Henderson M B, Arrell D, Larsson R. Nickel based superalloy welding practices for industrial gas turbine applications[J]. Science & Technology of Welding & Joining, 2013, 18(1):13-21.
Sato Y S, Urata M, Kokawa H. Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys[J]. Materials Science and Engineering: A, 2003, 354(1-2):298-305.
相关作者
相关机构