Numerical Simulation of Temperature-stress Field in Laser Soldering of Bumps
- Vol. 54, Issue 3, Pages: 80-88(2024)
Published: 25 March 2024
DOI: 10.7512/j.issn.1001-2303.2024.03.13
扫 描 看 全 文
Published: 25 March 2024 ,
扫 描 看 全 文
宰建轩,李辉,葛晓宏,等.高密度芯片激光钎焊温度场及应力场数值模拟研究[J].电焊机,2024,54(3):80-88.
ZAI Jianxuan, LI Hui, GE Xiaohong, et al.Numerical Simulation of Temperature-stress Field in Laser Soldering of Bumps[J].Electric Welding Machine, 2024, 54(3): 80-88.
旨在探讨激光钎焊工艺参数对高密度芯片制造中凸点焊点质量的影响。通过有限元方法建立了三维瞬态热耦合数值模型,并利用高斯体热源模型和iSoldering软件模拟了SnAgCu钎料凸点激光钎焊的温度场和应力场,研究不同功率10 W、15 W、20 W和不同光斑半径0.09 mm、0.3 mm、0.5 mm下SnAgCu钎料钎焊焊点的变化规律。研究发现,激光功率和光斑半径是影响焊点质量的关键参数。在部分参数不变的情况下,随着激光功率的增大,钎料熔化更完全,润湿性更好,但也会产生更大的等效应力。增大光斑半径会导致焊点温度和等效应力降低。经过数值模拟和实际钎焊焊点的对比,结果表明:当激光功率为15 W、光斑半径为0.09 mm、焊接速度为0.1 mm/s时,SnAgCu凸点激光钎焊的焊点质量最佳,模拟凸点钎焊的焊点与实际钎焊结果吻合度达到85%,验证了模拟结果的准确性和可靠性。同时探讨了钎料与焊盘之间生成的金属间化合物厚度对焊点质量的影响,为提高焊点连接强度提供了理论依据。
The study aims to explore the impact of laser brazing process parameters on the quality of bump solder joints in high-density chip manufacturing. A three-dimensional transient thermal coupling numerical model was established using finite element methods
and the Gaussian volume heat source model and iSoldering software were utilized to simulate the temperature and stress fields of SnAgCu brazed convex points. The research investigated the variation rules of SnAgCu brazing solder joints under different powers of 10 W
15 W
20 W
and different spot radii of 0.09 mm
0.3 mm
and 0.5 mm. The findings revealed that laser power and spot radius are the key parameters affecting solder joint quality. With some parameters remaining unchanged
an increase in laser power resulted in more complete brazing material melting
better wettability
but also greater equivalent stress. The increase in spot radius led to a decrease in solder joint temperature and equivalent stress. By comparing numerical simulations with actual brazed joints
the results showed that the best quality of SnAgCu convex point laser brazing solder joints was achieved when the laser power was 15 W
the spot radius was 0.09 mm
and the welding speed was 0.1 mm/s. The simulated convex point brazing solder joints matched the actual brazed results with an accuracy of 85%
verifying the accuracy and reliability of the simulation results. This study provides theoretical guidance for improving actual laser brazing processes and explores the impact of the thickness of intermetallic compounds formed between the brazing material and the solder pad on solder joint quality
offering a theoretical basis for enhancing solder joint connection strength.
激光钎焊凸点有限元分析温度场应力场
laser solderingsalient pointfinite-element modelingtemperature fieldstress field
Rahim K,Mian A. A review on laser processingin electronic and MEMS packaging[J]. Journal of Electronic Packaging, 2017, 139(3): 801-803.
焦万才, 杜银. QFP元件引脚钎焊温度场的瞬态数值模拟[J]. 电焊机, 2017, 47(09): 57-61.
JIAO W C, DU Y. Transient numerical simulation of temperature field of QFP element pin brazing[J]. Welding machine, 2017, 47(09): 57-61.
Gillner A,Holtkamp J,Hartmann C,et al. Laser applications in microtechnology[J]. Journal of Materials Processing Technology, 2005, 167(2-3): 494-498.
TIAN Y, WANG C, LIU D. Thermomechanical behaviour of PBGA package during laser and hot air reflow soldering[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12(2): 235-237.
刘炜, 周德俭. QFP器件激光软钎焊温度场的建模与仿真[J]. 桂林电子科技大学学报, 2014, 34(01): 21-24.
LIU W, ZHOU D J. Modeling and simulation of laser soldering temperature field of QFP devices[J]. Journal of Guilin University of Electronic Science and Technology, 2014, 34(01): 21-24.
余淑荣,陈秀娟,刘剑,等. 激光对接异厚度铝/钢熔钎焊温度场及残余应力场的数值模拟[J]. 兰州理工大学学报, 2017, 43(02): 25-29.
YU S R, CHEN X J, LIU J, et al. Numerical simulation of temperature field and residual stress field of laser butt brazing of aluminum/steel with different thickness[J]. Journal of Lanzhou University of Technology, 2017, 43(02): 25-29.
刘曰利, 周鹏宇, 李利敬. SnBiAg无铅钎料激光钎焊工艺的数值模拟与实验研究[J]. 武汉理工大学学报, 2019, 41(06): 31-38.
LIU Y L, ZHOU P Y, LI L J. Numerical simulation and experimental study on laser brazing process of SnBiAg lead-free solder[J]. Journal of Wuhan University of Technology, 2019, 41(06): 31-38.
李绍伟,王付鑫. 镀锌钢板卷对接头激光钎焊过程温度场模拟的实验验证[J]. 世界有色金属, 2020(18): 12-13.
LI S W,WANG F X. Experimental verification of temperature field simulation of laser brazing process of galvanized steel coil[J]. World Nonferrous Metals, 2020(18): 12-13.
YANG Z,LI L,CHEN W, et al. Numerical and experimental study on laser soldering process of SnAgCu lead-free solder[J]. Materials Chemistry and Physics, 2021, 273: 125046-125047.
KUNWAR A,SHANG S,RABACK P,et al. Heat and mass transfer effects of laser soldering ongrowth behavior of interfacial intermetallic compounds in Sn/Cu and Sn-3.5 Ag0.5/Cu joints[J]. Microelectronics Reliability, 2018, 80: 55-67.
赵庆宇, 秦坤, 万焱. 激光焊接1Cr17铁素体不锈钢温度场数值模拟[J]. 宽厚板, 2021, 27(03): 37-40.
ZHAO Q Y, QIN K, WAN Y. Numerical simulation of temperature field of laser welded 1Cr17 ferritic stainless steel[J]. Wide Plate, 2021, 27(03): 37-40.
张立艳, 董万鹏, 刘雅芳, 等. 基于ANSYS的激光焊接温度场数值模拟与实验研究[J]. 轻工机械, 2017, 35(01): 45-49.
ZHANG L Y, DONG W P, LIU Y F, et al. Numerical simulation and experimental study of laser welding temperature field based on ANSYS[J]. Light industry machinery, 2017, 35(01): 45-49.
OGAWA K,DENG D,KIYOSHIMA S,et al. Investigations on welding residual stresses in penetration nozzles by means of 3D thermal elastic plastic FEM and experiment[J]. Computational materials science, 2009, 45(4): 1031-1042.
张立艳, 董万鹏. 激光焊接应力场数值模拟的研究进展[J]. 热加工工艺, 2016, 45(13): 8-10.
ZHANG L Y, DONG W P. Research progress in numerical simulation of laser welding stress field[J]. Hot Processing Technology, 2016, 45(1): 8-10.
卢艳,张静,胡敬佩,等. 激光焊接铝合金材料过程的建模与仿真[J]. 热加工工艺,2012,41(01):130-133.
LU Y,ZHANG J,HU J P,et al. Modeling and simulation of laser welding process of aluminum alloy[J]. Hot working process, 2012,41(01):130-133.
Yoon J W,Noh B I,Kim B K,et al. Wettability and interfacial reactions of Sn-Ag-Cu/Cu and Sn-Ag-Ni/Cu solder joints[J]. Journal of Alloys and Compounds, 2009, 486(1-2): 142-147.
Huan P C,Tang X X,Sun Q,et al. Comparative study of solder wettability on aluminum substrate and microstructure-properties of Cu-based component/alumin-um laser soldering joint[J]. Materials & Design, 2022, 215: 110485-110487.
Meco S,Pardal G,Ganguly S,et al. Application of laser in seam welding of dissimilar steel to aluminium joints for thick structural components[J]. Optics and Lasers in Engineering, 2015, 67: 22-30.
Deng S,Yuan R,Tang X,et al. Migration behavior of IMC layer in twin-spot laser welding-soldering of aluminum to steel[J]. Materials & Design, 2020, 188: 108489.
相关作者
相关机构