Research Status of Preparation and Bonding of SiC/SiC Composites for Nuclear Applications
- Vol. 53, Issue 10, Pages: 45-50(2023)
DOI: 10.7512/j.issn.1001-2303.2023.10.07
扫 描 看 全 文
扫 描 看 全 文
李桃花,周博芳,张红霞,等.核用SiC陶瓷基复合材料制备与连接研究现状[J].电焊机,2023,53(10):45-50.
LI Taohua, ZHOU Bofang, ZHANG Hongxia, et al.Research Status of Preparation and Bonding of SiC/SiC Composites for Nuclear Applications[J].Electric Welding Machine, 2023, 53(10): 45-50.
SiC陶瓷基复合材料因其优异的高温性能和核性能,极可能成为第四代反应堆包壳材料的候选材料之一。在核反应堆恶劣的服役环境下,制造出满足工业应用的SiC管较为困难,因此需要对其制备与连接进行研究。本文简述了目前用于核用SiC陶瓷基复合材料的制备工艺(化学气相渗透、先驱体浸渍裂解、和纳米渗透瞬态共晶工艺)以及对其连接工艺(钎焊、陶瓷先驱体连接、纳米浸渍瞬时液相连接与玻璃陶瓷连接)的研究现状,并对未来SiC陶瓷基复合材料在核应用中的前景进行了展望。
Due to the excellent high-temperature performance and nuclear properties, SiC/SiC composites are one of the candidates for fourth-generation reactor cladding materials. In harsh nuclear environment, it is difficult to manufacture SiC tubes that meet industrial applications, so the preparation and joining need to be studied. In this paper, the current research status of the preparation process (Chemical Vapor Infiltration, Polymer Infiltration and Pyrolysis, and Nano Infiltration and Transient Eutectic) and joining technology (brazing, ceramic precursor connection, nano-impregnation transient liquid phase and glass-ceramics) for nuclear SiC/SiC composites is briefly summarized, and the prospects of SiC/SiC composites in nuclear applications in the future are proposed.
SiC陶瓷基复合材料制备工艺连接工艺核性能
SiC/SiC compositespreparation processjoining technologynuclear property
Zinkle S J, Terrani K A. Accident tolerant fuels for LWRs: A perspective[J]. Journal of Nuclear Materials, 2014, 448(1-3): 374-379.
徐晓卫,李宁,刘自豪,等. 碳化硅陶瓷连接技术研究现状[J].电焊机,2022,52(8):10-19
XU X Wei, LI N, LIU Z H, et al. Research Status of Joining Technology for SiC Ceramic[J]. Electric Welding Machine, 2022, 52(8): 10-19.
Katoh Y, Snead L L, Cheng T, et al. Radiation-tolerant joining technologies for silicon carbide ceramics and composites[J]. Journal of Nuclear Materials, 2014, 448: 497-511.
樊建新. SiC陶瓷真空钎焊工艺及机理研究[D]. 黑龙江:哈尔滨工业大学, 2010.
FAN J X. Technical and mechanism study on vacuum brazing of SiC ceramic[D]. Heilongjiang: Harbin Institute of Technology, 2010.
Katoh Y, Ozawa K. Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: Properties and irradiation effects[J]. Journal of Nuclear Materials, 2014, 448(1-3): 448-476.
Deck C P, Jacobsen G M, Sheeder J,et al. Characterization of SiC-SiC composites for accident tolerant fuel cladding[J]. Journal of Nuclear Materials, 2015,466: 667-681.
Katoh Y, Terrani K. Systematic technology evaluation program for SiC/SiC composite-based accident-tolerant LWR fuel cladding and core structures[S]. OAK RIDGE NATIONAL LABORATORY, 2015.
Ozawa K, Katoh Y, Nozawa T, et al. Effect of neutron irradiation on fracture resistance of advanced SiC/SiC composites[J]. Journal of Nuclear Materials,2011,417(1-3): 411-415.
Katoh Y, Snead L L, Nozawa T, et al. Thermophysical and mechanical properties of near-stoichiometric fiber CVI SiC/SiC composites after neutron irradiation at elevated temperatures[J]. Journal of Nuclear Materials, 2010, 403(1-3): 48-61.
Perez-Bergquist A G,Nozawa T,Katoh Y, et al. High dose neutron irradiation of Hi-Nicalon Type S silicon carbide composites,Part 1:Microstructural evaluations[J]. Journal of Nuclear Materials,2015,462: 443-449.
Terrani K A, Yang Y, Kim Y J, et al. Hydrothermal corrosion of SiC in LWR coolant environments in the absence of irradiation[J]. Journal of Nuclear Materials, 2015, 465: 488-498.
Luo Z, Zhou X G, Yu J S. Mechanical properties of SiC/SiC composites by PIP process with a new precursor at elevated temperature[J]. Materials Science and Engineering, 2014, 607: 155-161.
罗征. 采用LPVCS为先驱体制备SiC/SiC复合材料及其高温性能研究[D]. 湖南:国防科学技术大学,2014.
LUO Z. Processing of SiC/SiC Composites Prepared with LPVCS as Precursor Polymer[D]. Hunan:National University of Defense Technology, 2014.
Kotani M,Zimmer A,Matsuzaki S,et al. Improvement in matrix microstructure of SiC/SiC composites by incorporation of poreforming powder[J]. Journal of the Ceramic Society of Japan,2014,122(1430):863-869.
Nannetti C A, Ortona A, Riccardi B, et al. Manufacturing SiC-fiber-reinforced SiC matrix composites by improved CVI/slurry infiltration/polymer impregnation and pyrolysis[J]. Journal of the American Ceramic Society, 2004, 87: 1205-1209.
Katoh Y, Kotani M, Kishimoto H, et al. Properties and radiation effects in high-temperature pyrolyzed PIP-SiC/SiC[J]. Journal of Nuclear Materials, 2001, 289(1-2): 42-47.
Griffith G. Department of energy accident resistant SiC clad nuclear fuel development[C]//Enlarged Halden Programme Group Meeting, 2011.
冯薇. 核用高导热SiC/SiC组成与微结构设计基础[D]. 陕西: 西北工业大学, 2016.
FENG W. Basic design of the microstructure and composition of SiC/SiC composites with high thermal conductivity for nuclear reactor[D]. Shanxi:Northwestern Polytechnical University, 2016.
Shimodak K, Hinoki T. Influence of pyrolytic carbon interface thickness on microstructure and mechanical properties of SiC/SiC composites by NITE process[J]. Composites Science and Technology,2008,68:98-105.
Park J S,Kohyama A,Hinoki T,et al. Efforts on large scale production of NITE-SiC/SiC composites[J].Journal of Nuclear Materials, 2007, 367(1-3): 719-724.
Koyanagi T,Ozawa K,Hinoki T,et al. Effects of neutron irradiation on mechanical properties of silicon carbide composites fabricated by nano-infiltration and transient eutectic-phase process[J]. Journal of Nuclear Materials, 2014, 448(1-3): 478-486.
Shimoda K,Hinoki T. Enchanced high-temperature performances of SiC/SiC composites by high densification and crystalline structure[J]. Composites Science and Technology, 2011, 71(3): 326-332.
Hinoki T,Lee M H. Effect of constituents of silicon carbide composites on oxidation behaviour[J]. IAEA TECDOC Series, 2016:314.
Katoh Y, Snead L L, Cheng T, et al. Radiation tolerant joining technologies for silicon carbide ceramics and composites[J]. Jourmal of Nuclear Materials, 2014, 448(1-3): 497-511.
Nozawa T, Hinoki T. Recent advances and issues in development of silicon carbide composites for fusion applications[J]. Journal of Nuclear Materials,2009,386:622-627.
Jones R H,Giancarli L,Hasegawa A,et al. Promise and challenges of SiC/SiC composites for fusion energy applications[J]. Journal of Nuclear Materials, 2002, 307(2):1057-1072.
Katoh Y, Snead L L, Henager C H, et al. Current status and critical issues for development of SiC composites for fusion applications[J]. Journal of Nuclear Materials, 2007, 367(1-4): 659-671.
Matsukawa Y, Okuma I. Crystallographic analysis on atomic-plane parallelisms between bcc precipitates and hcp matrix in recrystallized Zr-2.5Nb alloys[J]. Acta Materialia. 2017, 126: 86-101.
Zhou B F, Wang J F, Feng K Q, et al. Effect of brazing parameters on the microstructure and properties of SiC ceramicjoint with Zr-Cu filler metal[J]. Crystals, 2020, 10: 93-101.
岳慧芳,冯可芹,庞华,等. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(S1): 321-325.
YUE H F, FENG K Q,PANG H, et al. Study on accident resistant SiC/Zr composite material prepared by powder metallurgy process[J]. Material Reports, 2019, 33(S1): 321-325.
Herderick E D, Cooper K, Ames N,et al. New approach to join SiC for accident-tolerant nuclear fuel cladding[J]. Advance Materials Processes, 2013, 170 (1): 24-27.
漆秦. 基于辐照损伤的SiC-Zr4钎焊接头的组织优化与微观机制[D]. 黑龙江: 哈尔滨工业大学, 2019.
QIN Q. Microstructure optimization and mechanism of SiC-Zr4 brazing ioints based on irradiation damage[D]. Harbin Institute of Technology, 2019.
陈祖斌. SiC陶瓷表面活化及钎焊工艺与机理研究[D]. 黑龙江:哈尔滨工业大学, 2021.
Chen Z B. Study on process and mechanism of surface activation and brazing of SiC ceramics[D]. Heilongjiang:Harbin Institute of Technology, 2021.
Wang X Z, Wang J, Wang H. Joining of SiC ceramics via a novel liquid preceramic polymer (V-PMS)[J]. Ceramics International, 2015, 41(6):7283-7288.
Henager C H, Shin Y, Bllum Y, et al. Coatings and joining for SiC and SiC-composites for nuclear nenergy systems[J]. Journal of Nuclear Materials, 2007, 367(1-3): 1139-1143.
Jeong D H, Septiadi A, Fitriani P, et al. Joining of SiC/SiC using polycarbosilane and polysilazane preceramic mixtures[J]. Ceramics International, 2018, 44: 10443-10450.
韩绍华, 薛丁琪. 基于核应用下碳化硅陶瓷及其复合材料的连接研究进展[J]. 硅酸盐通报, 2016, 35(5): 1520-1526.
HAN S H, XUE D Q. Study progress on joining of SiC Ceramics and SiC/SiC Composites for Nuclear Applications[J]. Bulletin of The Chinese Ceramic Society, 2016, 35(5): 1520-1526.
Parisha C M, Katoh Y, Kim Y J, et al. Microstructure and hydrothermal corrosion behavior of NITE-SiC with various sintering additives in LWR coolant environments[J]. Journal of The european ceramic society, 2017, 37(4): 1261-1279.
Jung H C, Hinoki T, Park J S, et al. R&D of joining technology for SiC components with channel[J]. Journal of Nuclear Materials, 2009, 386(1-3): 847-851.
Katoh Y,Koyanagi T,Cheng T,et al. Radiation-tolerant joining technologies for silicon carbide ceramics and composites[J]. Journal of Nuclear Materials, 2014, 448: 497-511.
Kim Y H, Jang S H, KIM Y W. Joining of silicon carbide ceramics using a silicon carbide tape[J]. International Journal of Applied Ceramic Technology, 2019, 16: 1295-1303.
Ferraris M,Salvo M,Casalegno V,et al. Joining of SiC based materials for nuclear energy applications[J].Journal of Nuclear Materials,2011,417(1-3):379-382.
Katoh Y, Kotani M, Kohyama A,et al. Microstructure and mechanical properties of low-activation glass-ceramic joining and coating for SiC composites[J].Journal of Nuclear Materials,2000,283(1-5):1262-1266.
Lee S P, Kohyama A, Katoh Y, et al. High temperature characterization of reaction sintered SiC based materials[J]. Journal of Nuclear Materials, 2004, 329(1-4): 534-538.
Herrmann M, Lippmann W. High-temperature stability of laser-joined silicon carbide components[J]. Journal of Nuclear Materials, 2013, 443: 458-466.
Ferraris M, Casalegno V, Rizzo S, et al. Effects of neutron irradiation on glass ceramics as pressure-less joining materials for SiC based components for nuclear applications[J]. Journal of Nuclear Materials, 2012, 429(1-3): 166-172.
相关文章
相关作者
相关机构