Study on the Microstructure and Properties of Ti60/TC17 Dissimilar Titanium Alloy Inertia Friction Welded Joints
- Vol. 53, Issue 8, Pages: 115-121(2023)
DOI: 10.7512/j.issn.1001-2303.2023.08.15
Quote
PDF
Scan for full text
Scan for full text
Quote
This article mainly uses inertial friction welding technology to connect Ti60/TC17 alloy, and analyzes the microstructure and properties of the welded/heat treated joints; During the weld process, there was viscous flow of metal droplets, and the metal materials on both sides fused well. The morphology at the welded joints presented an irregular curve shape, with a reduction of 4.2 mm and an axial misalignment of less than 0.3 mm; Dynamic recrystallization occurred on both sides of the weld interface, resulted in a higher microhardness values in the weld zone, and a lower microhardness value was further away from the weld; In the welded state, the structure of the weld was composed of acicular α slats and equiaxed grains, the heat engine affected zone on both sides had obvious streamline morphology; After heat treatment, the weld was needle shaped α flat noodles refinement, secondary α the phase increases, the recrystallization grain boundaries was obvious, and the streamline morphology of the heat affected zone on both sides disappeared; Through joint tensile performance test, the tensile fracture positions of the welded/heat treated specimens at room temperature occurred on the TC17 side, and the fracture morphology showed typical cleavage fracture. In the welded state, the average tensile strength was 978.5 MPa, reaching 92.06% of the base metal. After heat treatment, the average tensile strength was 1 076.5 MPa, an increase of 98 MPa, exceeding the tensile strength of the base metal. This indicates that heat treatment was beneficial for releasing residual stress in the organization and was easy to precipitate needle like structures α Phase, thereby improving the mechanical properties of the welded joint.
钛合金具有高强度质量比、优异的疲劳和良好的耐腐蚀性能,已经被广泛地应用于航空发动机的关键零部件[
目前发动机压气机组件连接多采用惯性摩擦焊或电子束焊接[
试验用TC17合金棒材,直径60 mm,长98 mm,名义成分为Ti-5Al-2Sn-2Zr-4Cr-4Mo。试验用Ti60合金棒材,焊接直径60 mm,长61.6 mm,名义成分为Ti-5.5Al-4Sn-3.5Zr-1Mo-0.4Si-0.85Nd,Ti60母材组织如
图1 Ti60母材组织
Fig.1 Structure of Ti60 base metal
图2 TC17母材组织
Fig.2 Structure of TC17 base metal
图3 母材力学性能
Fig.3 Mechanical properties of base metal
试验设备选用哈尔滨焊接研究所有限公司自主研制的HWI-IFW-130型轴/径向惯性摩擦焊机,最大焊接力为1 300 kN,极限转速为850 r/min。焊前对焊口使用乙醇溶液擦拭,去除表面杂质。焊接工艺参数如
E=0.5⋅I⋅W2 | (1) |
W=2πN60 | (2) |
式中 E为总能量(单位:J);I为转动惯量(单位:kg·m2);W为角速度(单位:rad);N为转速(单位:r/min)。
惯量/(kg·m2) | 转速/(r·min-1) | 顶锻压力/MPa | 角速度/rad | 总能量/J |
---|---|---|---|---|
280 | 400 | 70 | 41.89 | 245 643.48 |
Ti60和TC17试件的焊接过程如
图4 Ti60和TC17惯性摩擦焊焊接过程
Fig.4 Welding process of Ti60/TC17 inertia friction welded
图5 Ti60和TC17惯性摩擦焊接头
Fig.5 Ti60/TC17 inertia friction welded joint
2.2.1 焊态/热处理态接头宏观组织形貌
图6 宏观接头金相
Fig.6 Macroscopic joint metallographic diagram
2.2.2 焊态/热处理态接头微观组织形貌
为了进一步观察微观焊缝处的微观结构,焊态/热处理态接头焊缝处微观组织SEM图如
图7 焊接接头微观SEM图
Fig.7 Microscopic SEM image of welded joint
TC17和Ti60热机影响区组织形貌如
图8 焊态/热处理态热机影响区
Fig.8 Heat affected zone in welded/heat treated state
2.3.1 接头力学性能测试
为更加深入地研究界面处两侧显微硬度的差异,采取显微硬度仪分别对Ti60和TC17侧进行显微硬度测试,如
图9 焊态/热处理态接头显微硬度
Fig.9 Microhardness of welded/heat treated joint
为对比焊态/热处理态试样的拉伸性能,接头断裂情况如
图10 拉伸断裂试样
Fig.10 Tensile fracture specimen
图11 焊态/热处理态接头拉伸性能测试
Fig.11 Tensile performance testing of welded/heat treated joint
2.3.2 断口形貌分析
由于焊态/热处理态的断口形貌差异较小,所以取热处理态试样(2-1)进行微观分析如
图12 拉伸试样断口表征
Fig.12 Fracture characterization of tensile specimens
针对Ti60+TC17钛合金惯性摩擦焊接头焊态/热处理态组织特征及性能进行研究,现得出以下结论:
(1)在惯性摩擦焊的热-力耦合作用下,焊态焊缝区组织由细棒状α板条和等轴晶β相组成,在两侧热机影响区存在流线形貌,近TC17侧存在粗棒状α相,近Ti60侧形成α+β相层片状分布,且α相明显被拉长。热处理后,焊缝区再结晶的晶界明显,针状α板条增多,两侧热机影响区的流线形貌消失。
(2)焊态下,Ti60/TC17母材显微硬度分别为341 HV、334.2 HV,焊缝处显微硬度最高344.6 HV,热处理后,两侧材料流线形貌消失,Ti60母材显微硬度未发生变化,但TC17侧母材得到了强化,焊缝处α板条细化,次生α相明显增多,晶粒越细小,越能阻碍位错运动,故其硬度越高。
(3)通过对比焊态/热处理态拉伸性能,最高抗拉强度为1 079 MPa,已超过母材,延伸率达6%,多数断于TC17一侧,从裂纹扩展途径上来看,属于解理断裂。
方乃文,郭二军,徐锴,等. 钛合金激光填丝焊缝晶粒生长及相变原位观察[J].中国有色金属学报,2022,32(6):1665-1672. [Baidu Scholar]
FANG N W, GUO E J, XU K, et al. In-situ Observation of Grain Growth and Phase Transformation in Laser Welding of Titanium Alloy with Filler Wire[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(6):1665-1672. [Baidu Scholar]
方乃文,黄瑞生,龙伟民,等.填充金属对TC4钛合金激光填丝焊接头组织性能影响[J].稀有金属材料与工程,2023,52(05):1725-1736. [Baidu Scholar]
FANG N W,HUANG R S,LONG W M, et al. Effect of Filler Metal on Microstructure and Properties of Titanium Alloy Laser Welding Joints with Filler Wire[J].Rare Metal Materials and Engineering, 2023, 52(05):1725-1736. [Baidu Scholar]
滕怀亮,谭林月,王淑金.关于某型航空发动机高压压气机转静子碰磨问题分析与预防[J].中文科技期刊数据库(全文版)工程技术, 2022(12):5-8. [Baidu Scholar]
TENG H L,TANG L Y, WANG S J. Analysis and Prevention of Rubbing of the High Pressure Compressor Stator in a Certain Aeroengine[J]. Chinese Science and Technology Journal Database (Full Text Edition) Engineering Technology, 2022(12):5-8. [Baidu Scholar]
戎旭东,黄陆军,王博,等.热处理对魏氏组织Ti60合金组织与性能的影响[J]. 材料热处理学报, 2015, 36(10):39-45. [Baidu Scholar]
RONG X D,HUANG L J,WANG B, et al. Effect of Heat Treatment on the Structure and Properties of Ti60 Alloy with Weinstein Structure [J], Journal of Materials Heat Treatment, 2015, 36(10):39-45. [Baidu Scholar]
季亚娟,张田仓,李晓红.TC11/TC17钛合金线性摩擦焊接头组织与性能[J].航空制造技术,2011(8):66-69. [Baidu Scholar]
JI Y J, ZHANG T C,LI X H. Microstructure and Properties of TC11/TC17 Titanium Alloy Linear Friction Welded Joint[J]. Aviation Manufacturing Technology, 2011(8): 66-69. [Baidu Scholar]
耿培皓,秦国梁. 惯性摩擦焊接技术及其在航空工业领域的应用[J]. 精密成形工程,2017, 9(5):73-82. [Baidu Scholar]
GENG P H, QIN G L. Inertia Friction Welding Technology and Its Application in Aviation Industry Field[J]. Journal of Netshape Forming Engineering,2017,9(5):73-82. [Baidu Scholar]
陈玉华, 邓怀波, 许明方, 等. 镍钛形状记忆合金/钛合金异种材料焊接研究进展[J]. 电焊机, 2020, 50(9): 177-185. [Baidu Scholar]
CHEN Y H, DENG H B, XU M F, et al. Research progress in dissimilar welding of Nitinol shape memory alloy to Titanium alloy[J]. Electric Welding Machine,2020, 50(9):177-185. [Baidu Scholar]
张露,韩秀峰,阮雪茜. 惯性摩擦焊在商用航空发动机中的应用与研究现状[J]. 电焊机,2022,52(5):91-98. [Baidu Scholar]
ZHANG L, HAN X F, RUAN X Q. Application and Research Status of Inertia Friction Welding inCommercial Aeroengine[J]. Electric Welding Machine, 2022, 52(5): 91-98. [Baidu Scholar]
QIN F , ZHANG C B, ZHOU J, et al. Microstructure and Mechanical Properties of Aluminum Alloy Stainless Steel Dissimilar Ring Joint Welded By Inertia Friction Welding[J]. Frontiers in Materials, 2021, 8: 561. [Baidu Scholar]
李睿, 张春波, 周军,等. Ti52钛合金/304不锈钢异种材料惯性摩擦焊接技术研究[J]. 电焊机, 2022, 52(06): 70-77. [Baidu Scholar]
LI R, ZHANG C B,ZHOU J, et al. Research on Inertial Friction Welding Technology for Ti52 Titanium Alloy/304 Stainless Steel Heterogeneous Materials [J]. Electric welding machine, 2022, 52(06): 70-77. [Baidu Scholar]
乌彦全, 周军, 张春波,等. α+β型钛合金惯性摩擦焊接头焊态/热处理态组织特征及性能[J]. 稀有金属材料与工程, 2022, 51(06): 2144-2150. [Baidu Scholar]
WU Y Q, ZHOU J, ZHANG C B, et al. α+β Microstructure Characteristics and Properties of Inertia Friction Welded Joints of Type Titanium Alloy in the Welded/heat Treated State[J]. Rare Metal Materials and Engineering, 2022, 51(06): 2144-2150. [Baidu Scholar]
Cheng C , Yu B B, Chen Z Y, et al. Mechanical Properties of Electron Beam Welded Dissimilar Joints of TC17 and Ti60 Alloys[J]. Journal of Materials Science & Technology 2018, 34(10):8. [Baidu Scholar]
张田仓,李晶,季亚娟,等. TC4钛合金线性摩擦焊接头组织和力学性能[J].焊接学报, 2010(02):53-56. [Baidu Scholar]
ZHANG T C,LI J,JI Y J, et al. Microstructure and Mechanical Properties of TC4 Titanium Alloy Linear Friction Welding Joint[J]. Transactions of the China Welding Institution, 2010(02): 53-56. [Baidu Scholar]
周军,梁武,张春波,等.TC17钛合金线性摩擦焊接头组织及力学性能分析[J].焊接学报, 2020(5):36-41. [Baidu Scholar]
ZHOU J,LIANG W,ZHANG C B, et al. Analysis of Microstructure and Mechanical Properties of TC17 Titanium Alloy Linear Friction Welded Joints[J]. Transactions of the China Welding Institution,2020(5):36-41. [Baidu Scholar]
Related Articles
Related Author
Related Institution