Research Progress on Phase Field Simulation of Microstructure Evolution in Welding Process
- Vol. 53, Issue 8, Pages: 98-106(2023)
DOI: 10.7512/j.issn.1001-2303.2023.08.13
扫 描 看 全 文
扫 描 看 全 文
朱宇辰,钟素娟,郭军华,等.焊接过程微观组织演变的相场模拟研究进展[J].电焊机,2023,53(8):98-106.
ZHU Yuchen, ZHONG Sujuan, GUO Junhua, et al.Research Progress on Phase Field Simulation of Microstructure Evolution in Welding Process[J].Electric Welding Machine, 2023, 53(8): 98-106.
焊接过程影响焊接接头的组织,进而决定了整个焊接结构的性能。通常的实验方法仅能获得焊后接头组织,无法原位动态地了解接头形成过程。借助先进的数值模拟方法可以对接头微观组织的演变过程进行研究,优化焊接工艺参数,提升接头性能。相场法已被广泛应用于模拟材料微观组织的演变过程,焊接过程微观组织演变的相场模拟也成为当下的研究热点。首先对相场法进行了简要介绍,针对熔化焊接熔池枝晶生长、搅拌摩擦焊搅拌区动态再结晶、钎焊接头形成及组织演变三个主要研究对象,对国内外焊接过程相场模拟的研究进展进行汇总梳理,提出当前相场模拟在焊接领域应用中面临的挑战并对未来发展方向进行展望。
The welding process determines the microstructure of the welded joint, which in turn determines the performance of the entire welded structure. The conventional experimental methods can only obtain the microstructure of the welded joint, and cannot dynamically understand the formation process of the joint in situ. With the help of advanced numerical simulation methods, the evolution process of the joint microstructure can be studied, the welding process parameters can be optimized, and the joint performance can be improved. The phase field method has been widely used to simulate the microstructure evolution of materials. The phase field simulation of microstructure evolution in welding process has also become a research hotspot. Firstly, the phase field method is briefly introduced. Aiming at the three main research objects of dendrite growth in molten pool, dynamic recrystallization in friction stir welding stirring zone, formation and microstructure evolution of brazed joints, the research progress of phase field simulation in welding process at home and abroad is summarized. The challenges faced by the application of phase field simulation in welding field are put forward and the future development direction is prospected.
焊接相场法数值模拟微观组织
weldingphase field methodnumerical simulationmicrostructure
王永彪. 铸造镁稀土合金凝固组织的相场法模拟和同步辐射表征[D].上海:上海交通大学, 2017.
WANG Y B. Phase field simulation and synchrotron radiation characterization of solidification structure of cast Mg-RE alloy[D]. Shanghai:Shanghai JiaoTong University, 2017.
CHEN L Q. Phase-Field Models for Microstructure Evolution[J]. Annual Review of Materials Research, 2002, 32(1): 113-140.
BOETTINGER W J, WARREN J A, BECKERMANN C, et al. Phase-Field Simulation of Solidification[J]. Annual Review of Materials Research, 2002, 32(1): 163-194.
王杰,李欣凯,刘畅,等. 材料微结构演化的相场模拟[J]. 固体力学学报,2016,37(1):1-33.
WANG J, LI X K, LIU C, et al. Phase-field simulation of material microstructure evolution[J]. Chinese Journal of Solid Mechanics, 2016, 37(1):1-33.
WHEELER A A, BOETTINGER W J, MCFADDEN G B. Phase-field model for isothermal phase transitions in binary alloys[J]. Phys. Rev. A,1992,45(10):7424-7439.
KIM S G, KIM W T, SUZUKI T. Phase-field model for binary alloys[J]. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1999, 60(6 Pt B): 7186-7197.
KARMA A. Phase-field formulation for quantitative modeling of alloy solidification[J]. Phys. Rev. Lett., 2001, 87(11): 115701.
OFORI-OPOKU N, PROVATAS N. A quantitative multi-phase field model of polycrystalline alloy solidification[J]. Acta. Mater., 2010, 58(6): 2155-2164.
KIM S G. A phase-field model with antitrapping current for multicomponent alloys with arbitrary thermodynamic properties[J]. Acta. Mater., 2007, 55(13): 4391-4399.
魏艳红,王勇,董志波,等. 纯金属TIG焊熔池等轴晶生长的相场法模拟[J]. 焊接学报,2011,32(3): 1-4+8+113.
WEI Y h, WANG Y, DONG Z B, et al. Phase field simulation of equiaxed crystal growth in pure metal TIG weld pool[J]. Transactions of the China Welding Institution, 2011,32(3): 1-4+8+113.
袁训锋,杨燕,刘宝盈,等. 镁合金焊缝凝固枝晶生长的相场法模拟分析[J]. 轻合金加工技术, 2018, 46(9):29-38.
YUAN X F, YANG Y, LIU B Y, et al. Phase-field simulation analysis of solidification dendrite growth in magnesium alloy welds[J]. Light Alloy Fabrication Technology, 2018,46 (9): 29-38.
FARZADI A, DO-QUANG M, SERAJZADEH S, et al. Phase-field simulation of weld solidification microstructure in an Al-Cu alloy[J]. Modelling and Simulation in Materials Science and Engineering, 2008,16(6):065005.
WANG L, WEI Y, CHEN J, et al. Macro-micro modeling and simulation on columnar grains growth in the laser welding pool of aluminum alloy [J]. International Journal of Heat and Mass Transfer,2018,123:826-838.
WANG L, WEI Y. Onset of Curved Dendrite Growth in an Al-Cu Welding Pool: A Phase Field Study[J]. Jom, 2018, 70(5): 733-738.
XIONG L D, WANG C M, WANG Z M, et al. The Interaction between Grains during Columnar-to-Equiaxed Transition in Laser Welding: A Phase-Field Study[J]. Metals-Basel, 2020, 10(12):1647.
XIONG L D, ZHU G L, MI G Y, et al. A phase-field simulation of columnar-to-equiaxed transition in the entire laser welding molten pool[J]. Journal of Alloys and Compounds, 2021, 858:157669.
LIU X B, TANG F Y, ZHAO W Y, et al. Multi-phase field lattice Boltzmann model of columnar-to-equiaxed transition in entire welding molten pool[J]. Computational Materials Science, 2022, 204:111182.
王磊,李赫,黄勇,等. 各向异性对焊接凝固裂纹影响规律的相场法模拟[J].焊接学报, 2021, 42(12): 83-86+101-102.
WANG L, LI H, HUANG Y, et al. Phase-field simulation of the effect of anisotropy on welding solidification cracks[J]. Transactions of the China Welding Institution, 2021, 42(12): 83-86+101-102.
GENG S, JIANG P, SHAO X, et al. Effects of back-diffusion on solidification cracking susceptibility of Al-Mg alloys during welding: A phase-field study[J]. Acta. Mater., 2018, 160: 85-96.
WANG D, KADOI K, SHINOZAKI K. Prediction of Residual Liquid Distribution of Austenitic Stainless Steel during Laser Beam Welding Using Multi-Phase Field Modeling[J]. Isij. Int., 2017, 57(1): 139-147.
TAN W, BAILEY N S, SHIN Y C. A novel integrated model combining Cellular Automata and Phase Field methods for microstructure evolution during solidification of multi-component and multi-phase alloys[J]. Computational Materials Science, 2011, 50(9): 2573-2585.
ZHENG Y, LIU J, LIANG Y, et al. Monte-Carlo-Assisted Phase Field Simulations of Grain Structure Evolution during the Welding Process[J]. Metals-Basel, 2023, 13(3).
MI G Y, XIONG L D, WANG C M, et al. Two-dimensional phase-field simulations of competitive dendritic growth during laser welding[J]. Mater Design, 2019, 181:107980.
BAILEY N S, HONG K M, SHIN Y C. Comparative assessment of dendrite growth and microstructure predictions during laser welding of Al 6061 via 2D and 3D phase field models[J]. Computational Materials Science, 2020, 172:109291.
武凯,贾贺鹏,孙宇,等. 搅拌摩擦焊技术的研究进展[J].机械制造与自动化, 2020, 49(6): 1-9.
WU K, JIA H P, SUN Y, et al. Research progress of friction stir welding technology[J]. Machine Building & Automation, 2020, 49(6): 1-9.
PROSGOLITIS C G, LAMBRAKOS S G, ZERVAKI A D. Phase-Field Modeling of Nugget Zone for a AZ31-Mg-Alloy Friction Stir Weld[J]. J. Mater. Eng. Perform., 2018, 27(10): 5102-5113.
YANG C, WU C, SHI L. Phase-field modelling of dynamic recrystallization process during friction stir welding of aluminium alloys[J]. Science and Technology of Welding and Joining, 2019, 25(4): 345-358.
SADEGHIAN B, TAHERIZADEH A, ATAPOUR M, et al. Phase-field simulation of microstructure evolution during friction stir welding of 304 stainless steel [J]. Mechanics of Materials, 2021, 163: 104076.
APEL M, LASCHET G, BöTTGER B, et al. Phase Field Modeling of Microstructure Formation, DSC Curves, and Thermal Expansion for Ag-Cu Brazing Fillers Under Reactive Air Brazing Conditions[J]. Adv. Eng. Mater, 2014, 16(12): 1468-1474.
BöTTGER B, APEL M, LAUX B, et al. Detached Melt Nucleation during Diffusion Brazing of a Technical Ni-based Superalloy: A Phase-Field Study[J]. IOP Conference Series: Materials Science and Engineering, 2015, 84: 012031.
相关文章
相关作者
相关机构