Study on Low Vacuum 20 kW Laser Welding Characteristics of TC4 Titanium Alloy
- Vol. 53, Issue 8, Pages: 28-35(2023)
DOI: 10.7512/j.issn.1001-2303.2023.08.05
扫 描 看 全 文
扫 描 看 全 文
邹吉鹏,黄瑞生,武鹏博,等.TC4钛合金低真空20 kW激光焊接特性研究[J].电焊机,2023,53(8):28-35.
ZOU Jipeng, HUANG Ruisheng, WU Pengbo, et al.Study on Low Vacuum 20 kW Laser Welding Characteristics of TC4 Titanium Alloy[J].Electric Welding Machine, 2023, 53(8): 28-35.
为探究厚壁钛合金在不同环境压力下的激光焊接特性,采用低真空激光焊接技术对Ti6Al4V合金进行非熔透焊接试验研究,分析了亚气氛环境压力对钛合金万瓦级激光焊接焊缝成形、焊接气孔、等离子体羽、熔池及匙孔的影响规律,并探讨亚气氛环境可以改善万瓦级激光焊接质量的可能原因。研究结果表明:环境压力对焊缝熔深、熔池宽度及匙孔上表面开口直径的影响存在一个临界区间即10,4, Pa数量级,达到临界区间后焊缝熔深会显著增加,熔池宽度、孔口直径显著减小。造成这种现象的可能原因之一是等离子体羽的突变,亚气氛环境激光焊接等离子体羽被明显抑制,对激光束能量传输的干扰效应降低。
In order to explore the laser welding characteristics of thick-walled titanium alloy under different ambient pressures, the non-penetration welding test of Ti6Al4V alloy was carried out by low vacuum laser welding technology. The influence of sub-atmosphere ambient pressure on the weld formation, welding porosity, plasma plume, molten pool and keyhole of laser welding of titanium alloy was analyzed, and the possible reasons why sub-atmosphere environment can improve the quality of laser welding of ten thousand watts were discussed. The results show that there is a critical range of 10,4, Pa for the influence of ambient pressure on weld penetration, weld pool width and keyhole upper surface opening diameter. After reaching the critical range, the weld penetration will increase significantly, and the weld pool width and orifice diameter will decrease significantly. One of the possible reasons for this phenomenon is the sudden change of plasma plume. The plasma plume of laser welding in sub-atmosphere environment is obviously suppressed, and the interference effect on laser beam energy transmission is reduced.
厚壁钛合金低真空激光焊焊接特性等离子体羽
thick-walled titanium alloylow vacuum laser weldingwelding characteristicsplasma plume
方乃文. TC4钛合金厚板窄间隙激光填丝焊及组织性能调控[D]. 黑龙江:哈尔滨理工大学, 2022.
FANG N W. Controlling of Microstructure and Properties of TC4 Titanium Alloy Thick Plate Narrow-gap Laser Welding with Filler Wire[D]. Heilongjiang: Harbin University of Science and Technology, 2022.
方乃文, 郭二军, 徐锴, 等. 钛合金激光填丝焊缝晶粒生长及相变原位观察[J]. 中国有色金属学报, 2022, 32(6): 1665-1672.
FANG N W, GUO E J, XU K, et al. In-situ Observation of Grain Growth and Phase Transformation in Laser Welding of Titanium Alloy with Filler Wire[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(6): 1665-1672.
龙伟民, 何鹏, 顾敬华. 中国有色金属焊接材料的发展现状及展望[J]. 焊接, 2011(11): 7-10+70.
LONG W M, HE P, GU J H. Development Status and Prospect of Non-ferrous Metal Welding Materials in China[J]. Welding & Joining, 2011(11): 7-10+70.
Zhang L J, Lu G F, Ning J, et al. Effects of Minor Zr Addition on the Microstructure and Mechanical Properties of Laser Welded Dissimilar Joint of Titanium and Molybdenum[J]. Materials Science and Engineering A, 2019;742: 788-797.
Fang N W, Guo E J, Xu K, et al. Effect of Shielding Gas on the Microstructure and Mechanical Properties of TC4 Titanium Alloy Ultra-narrow Gap Welded Joint by Laser Welding with Filler Wire[J]. Advances in Materials Science and Engineering, 2021: 9582421.
Fang N W, Guo E J, Huang R S, et al. Effect of Welding Heat Input on Microstructure and Properties of TC4 Titanium Alloy Ultra-narrow Gap Welded Joint by Laser Welding with Filler Wire[J]. Materials Research Express, 2021, 8(1): 016511.
Saresh N, Pillai M G , Mathew J. Investigations Into the Effects of Electron Beam Welding on Thick Ti-6Al-4V Titanium Alloy[J]. Journal of Materials Processing Tech, 2007, 192: 83-88.
方乃文, 黄瑞生, 武鹏博等. 钛合金窄间隙激光填丝焊接工艺及接头组织性能分析[J]. 材料导报, 2023, 37(10): 190-197.
FANG N W, HUANG R S, WU P B, et al. Study on Welding Process and Microstructure and Properties of Titanium Alloy Narrow Gap Laser Filler Wire[J]. Materials Reports, 2023, 37(10): 190-197.
Pan W, Tan X, Nai M, et al. Spatial and Geometrical-based Characterization of Microstructure and Microhardness for an Electron Beam Melted Ti6Al4V Component[J]. Materials & Design,2016,95(4): 287-295.
Balasubramanian T S, Balasubramanian V, Manickam M M. Fatigue Crack Growth Behaviour of Gas Tungsten Arc, Electron Beam and Laser Beam Welded Ti-6Al-4V Alloy[J]. Materials & Design, 2011, 32(8-9):4509-4520.
张明军. 万瓦级光纤激光深熔焊接厚板金属蒸气行为与缺陷控制[D]. 湖南:湖南大学, 2013.
ZHANG M J. Study on the Behavior of Metallic Vapor Plume and Defects Control during Deep Penetration Laser Welding of Thick Plate Using 10 kW Level High Power Fiber Laser[D]. Hunan:Hunan University,2013.
李时春. 万瓦级激光深熔焊接中金属蒸气与熔池耦合行为研究[D]. 湖南:湖南大学, 2014.
LI S C. Study on the Coupling Behavior between Metallic Vapor and Melt Pool during Deep Penetration Welding with 10-kW Level Laser[D]. Hunan:Hunan University, 2014.
冯立晨. Q235低碳钢厚板30 kW级超高功率激光深熔焊接特性研究[D]. 黑龙江:哈尔滨工业大学, 2018.
FENG L C. Research on Characteristics of Deep Penetration Welding of Thick Q235 Steel Plates With 30kW Level Laser[D]. Heilongjiang:Harbin Institute of Technology, 2018.
Reisgen U, Olschok S, Jakobs S, et al. Welding With the Laser Beam in Vacuum[J]. Laser Technik Journal, 2015, 12(2): 42-46.
Francis J A, Holtum N, Olschok S, et al. Vacuum Laser Welding of SA508 Steel[J]. Journal of Materials Processing Technology, 2019, 274: 116269.
姜梦. 低真空激光焊接特性及热物理过程的试验研究与数值模拟[D]. 黑龙江: 哈尔滨工业大学,2020.
JIANG M. Experimental Study and Numerical Simulation of Low Vacuum Laser Welding Characteristics and Thermal Physical Process[D]. Heilongjiang:Harbin Institute of Technology, 2020.
Reisgen U,Olschok S,Turner C. Welding of thick plate copper with laser beam welding under vacuum[J].Journal of Laser Applications, 2017, 29(2): 022402.
Youhei A, Yousuke K, Hiroshi N, et al. Effect of Reduced Pressure Atmosphere on Weld Geometry Inpartial Penetration Laser Welding of Stainless Steel and Aluminium Alloy with High Power and High Brightness Laser[J]. Science & Technology of Welding & Joining, 2014, 19(4): 324-332.
Jiang M , Tao W, Chen Y B , et al. Comparison of Processing Window in Full Penetration Laser Welding of Thick High-strength Steel Under Atmosphere and Sub-atmosphere[J]. Optics & Laser Technology, 2019, 109: 449-455
Luo Y, Tang X, Lu F, et al. Spatial Distribution Characteristics of Plasma Plume on Attenuation of Laser Radiation Under Subatmospheric Pressure[J]. Applied Optics, 2015, 54: 1090-1096.
Gong J F, Peng G C, Li L Q, et al. Effect of Plasma Plume Produced by Vacuum Laser Welding on Energy Transmission[J]. Optics & Laser Technology, 2020, 136:106744
相关文章
相关作者
相关机构