Laser-GMAW Hybrid Welding Weld-Formation Simulation and Distortion Suppression of Semi-truck Welding Structure
- Vol. 53, Issue 7, Pages: 16-23(2023)
DOI: 10.7512/j.issn.1001-2303.2023.07.03
扫 描 看 全 文
扫 描 看 全 文
殷琪安,陶武,牟刚,等.重卡结构件激光-GMAW复合焊接变形数值模拟研究[J].电焊机,2023,53(7):16-23.
YIN Qi'an, TAO Wu, MOU Gang, et al.Laser-GMAW Hybrid Welding Weld- Formation Simulation and Distortion Suppression of Semi-truck Welding Structure[J].Electric Welding Machine, 2023, 53(7): 16-23.
利用热弹塑性有限元分析,对材料为Q235钢的重卡结构件激光-GMAW复合焊接的温度场及焊接变形进行数值模拟计算。将平面高斯热源与高斯倒锥体热源结合,建立了适用于激光-GMAW复合焊接的组合热源模型,计算所得的焊缝横截面形状和尺寸与试验吻合较好。对于整个焊接结构的焊接顺序分成多个部分进行规划,包括了两个待焊面的整体先后顺序、局部的焊接起始位置以及焊接路径选择,焊接路径包括顺序焊、分步退焊、跳焊。在结构上选取4条关键路径,并将路径上各点的,z,方向位移量进行标准差计算,并取平均值,作为整个结构,z,方向变形程度系数,建立了针对具有复杂变形趋势和变形分布的焊接结构的变形严重程度定量评估方法。将各步骤内的最优方案进行结合,最终得到的最优焊接顺序方案为先焊A面后焊B面,且B面采用跳焊路径,3号位置作为焊接起始位置。最优方案焊接变形程度系数为0.2 mm,与最差焊接方案相比,焊接变形程度系数降低了28.6%。
This paper predicts the temperature field and post-weld deformation of semi-truck structures with Q235-steel fillet welds fabricated by laser-GMAW hybrid welding via thermo-mechanical FEM analysis. A combined volumetric heat source consisting of planar gaussian heat source and conical volumetric heat source. was applied in the thermal analysis. The numerical results showed that the computed cross-sectional shape and weld size coincides well with the experimental ones. This consistency proves the validity of the combined planar and conical gaussian heat source in the temperature-field simulation of laser-GMAW hybrid welding. The welding sequence has been planned step by step, including the overall sequence of double-side structures, the starting position, and the selection of welding paths between sequential welding, backstep welding, and jump welding. Four key paths have been selected and the average value of ,z,-direction displacement of points at each path has been calculated as the deformation coefficient of the entire structure so that a quantitative evaluation method for complicated-structure deformation was established. The optimum method in each step has been combined and the final strategy is to weld A side first and to adopt jump welding path and No.3 starting position when welding B side. The optimized welding deformation coefficient of the post-welding structure is 0.2 mm, which is 28.6% lower than the worst welding sequence's coefficient of 0.28 mm.
激光-GMAW复合焊接组合式体积热源热弹塑性分析焊接顺序
laser-GMAW hybrid weldingcombined volumetric heat sourcethermo-mechanical analysiswelding sequence optimization
吴向阳,宿浩,孙岩,等. 激光+GMAW复合热源焊接过程热-力耦合数值分析[J]. 焊接学报, 2021,42(01):91-96+103-104.
WU X Y, SU H, SUN Y, et al. Thermal-mechanical coupled numerical analysis of laser+GMAW hybrid heat source welding process[J]. Transactions of the China Welding Institution, 2021,42(01):91-96+103-104.
Jing H H, Ye X, Hou X Q, et al. The Influence of Laser Power and Butt Gap on the Droplet Transfer and Weld Formation of Laser Arc Hybrid Welding[J]. Journal of Physics: Conference Series, 2021, 2002(1): 012009.
周广涛, 刘雪松, 闫德俊, 等. 顶板焊接顺序优化减小焊接变形的预测[J]. 焊接学报, 2009, 30(9): 109-112+118.
ZHOU G T, LIU X S, YAN D J, et al. Prediction for welding deformation reducing by welding sequence optimization of upper plate[J]. Transactions of the China Welding Institution, 2009, 30(9): 109-112+118.
Zhang C H, Li S, Hu L, et al. Effects of Pass Arrangement on Angular Distortion, Residual Stresses and Lamellar Tearing Tendency in Thick-Plate T-Joints of Low Alloy Steel[J]. Journal of Materials Processing Technology, 2019, 274: 116293.
董华, 苏文学, 张国, 等. 焊接顺序对q345qd钢厚板焊接接头残余应力和变形的影响[J]. 焊接, 2023(04): 21-28.
DONG H, SU W X, ZHANG G, et al. Effect of welding sequence on residual stress and deformation of welded joint of Q345qD steel thick plate[J]. Welding & Joining, 2023(04): 21-28.
Chen Z, Chen Z C, Shenoi R A. Influence of Welding Sequence on Welding Deformation and Residual Stress of a Stiffened Plate Structure[J]. Ocean Engineering, 2015, 106: 271-280.
Teng T L, Chang P H, Tseng W C. Effect of Welding Sequences on Residual Stresses[J]. Computers & Stru-ctures, 2003, 81(5): 273-286.
Yang J, Su J H, Gao C K, et al. Effect of Heat Input on Interfacial Microstructure,Tensile and Bending Pro-perties of Dissimilar Al/Steel Lap Joints by Laser We-lding-Brazing[J]. Optics & Laser Technology, 2021,142: 107218.
Sun M K, Zhao D S, Liu Y J. Numerical Simulation of Residual Stresses in Single Pass Butt-Weld of Dissimilar Pipe Joint During the Fusion Welding Process[J]. Advanced Materials Research, 2011, 314-316: 1034-1037.
胥国祥, 鹿启权. 激光深熔焊体积热源模型计算精度的比较[J]. 焊接, 2012(04): 24-28+70.
XU G X, LU Q Q. Comparison of calculation accuracy of volumetric heat source models for laser deep-penetration welding[J]. Welding & Joining,2012(04):24-28+70.
Wang J C, Yin X Q, Murakawa H. Experimental and Computational Analysis of Residual Buckling Distortion of Bead-on-Plate Welded Joint[J]. Journal of Materials Processing Technology, 2013, 213(8): 1447-1458.
编辑部网址:http://www.71dhj.comhttp://www.71dhj.com
相关文章
相关作者
相关机构