Low Temperature Impact Toughness Improving Research on Robot Automatic Welding Joint
- Vol. 53, Issue 6, Pages: 129-134(2023)
DOI: 10.7512/j.issn.1001-2303.2023.06.19
扫 描 看 全 文
扫 描 看 全 文
李连波,孙有辉,马丽,等.机器人自动焊焊接接头低温冲击韧性优化研究[J].电焊机,2023,53(6):129-134.
LI Lianbo, SUN Youhui, MA Li, et al.Low Temperature Impact Toughness Improving Research on Robot Automatic Welding Joint[J].Electric Welding Machine, 2023, 53(6): 129-134.
在机器人全自动焊接工艺开发过程中,存在其焊接接头低温冲击功不满足焊接标准要求或者离散度较大的现象。为解决此问题,针对多个可能影响机器人自动焊焊接接头低温冲击韧性的因素,制定不同的焊接方案,进行焊接试验及焊后焊接接头低温冲击功测试,并对得到的数据进行离散度分析。经对比发现,不同影响因素对于焊接接头低温冲击韧性影响大小不一,热输入及焊材牌号的影响最大。施工效率最高的焊接方案为:采用M60焊材,以1.0~1.25 kJ/mm的热输入焊接,采用气刨清根并配以打磨,背面填充采用药芯气保焊,配以L71焊材焊接,按照此方案开展实验,结果表明焊接接头的低温冲击功在-40 ℃时仍满足规范要求。
The low temperature impact energy of welding joint does not meet the requirements of welding standard or is with a large dispersion as robot automatic welding specification developing. In order to solve this problem, this paper formulate different welding schemes according to the factors that may affect the low temperature impact toughness of the robot automatic welding joint, carried out the low temperature impact energy of the joints after welding, and analyzed the dispersion of the obtained data. It is found that different influencing factors have different effect on the low temperature impact toughness of welding joints. Finally, a welding scheme for robot automatic welding with the highest construction efficiency was designed. According to this scheme, experiments were carried out. The results show that the low temperature impact energy of the joint is acceptable by the welding standard at -40 ℃.
海洋工程钢结构机器人自动焊低温冲击焊接工艺
offshore engineering steel structurerobot automatic weldinglow temperature impact toughnesswelding specification
王田苗,陈殿生,陶永,等. 改变世界的智能机器—智能机器人发展思考[J]. 科技导报,2015(21):16-22.
WANG T M,CHEN D S,TAO Y,et al. Intelligent machines that will change the world: Thinking on the development of intelligent robots[J]. Science & Technology Review,2015(21):16-22.
符娅波,边美华,许先果. 弧焊机器人的应用与发展[J]. 热加工工艺,2006(35):79-81.
FU Y B,BIAN M H,XU X G. Application and Development of Arc Welding Robot[J]. Hot Working Technology,2006(35):79-81.
申俊琦,王志江,胡绳荪,等.盾构机部件机器人焊接工艺研究[J].机械工程学报, 2019, 55(23):103-108.
SHEN J Q,WANG Z J,HU S S,et al. Robot Welding Process Research of Shield Machine Parts[J]. Journal of Mechanical Engineering, 2019, 55(23): 103-108.
戴建明, 韩沛文, 蒋林. 基于弧焊智能化的探索[J]. 电焊机, 2021, 51(2):99-103.
DAI J M, HAN P W, JIANG L. Research on intelligent arc welding[J]. Electric Welding Machine, 2021, 51(2):99-103.
陈远强,罗文国,付俊,等.锅炉集箱管座机器人焊接试验工作站的设计与实现[J]. 电焊机, 2023, 53(1):100-105.
CHEN Y Q, LUO W G, FU J, et al.Design and Realization of Intelligent Welding Test Workstation for Tube Base of Boiler Header[J]. Electric Welding Machine, 2023, 53(1): 100-105.
曹国龙,谢宇. 焊接机器人在海洋工程中的应用[J]. 金属加工(热加工),2019(6):30-32.
CAO G L,XIE Y. Application of welding robot in ocean engineering[J]. MW Metal Forming, 2019(6):30-32.
吴正林, 王永峰, 陈彦宾, 等. 海洋平台运维工程管线预制数字化焊接生产线[J]. 电焊机, 2021, 51(12):100-105.
WU Z L, WANG Y F, CHEN Y B, et al. Digital preFabrication Welding Production Line for Offshore Platform Operation and Maintenance Engineering Pipeline[J]. Electric Welding Machine,2021,51(12):100-105.
张文钺. 焊接冶金学(基本原理)[M]. 北京:机械工业出版社,2012:185-190.
赵建平,张秀敏,沈士明. 材料韧脆转变温度数据处理方法探讨[J]. 石油化工设备,2004(4):29-32.
ZHAO J P,ZHANG X M,SHEN S M. On the method of data processing for ductile-brittle transition temperature[J]. Petro-chemical Equipment,2004(4):29-32.
高国良. ERW管冲击韧性离散度及其分析[J]. 焊管,1993(1):12-15.
GAO G L. Dispersion and Analysis of Impact Toughness of ERW Pipe[J]. Welded Pipe and Tube,1993(1):12-15.
相关文章
相关作者
相关机构